# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2014-2021 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
import json
import logging
import itertools
import collections
import numpy
import pandas
from openquake.baselib import hdf5
from openquake.hazardlib.stats import compute_stats, compute_stats2
from openquake.risklib import scientific
from openquake.calculators.extract import (
    extract, build_damage_dt, build_damage_array, sanitize)
from openquake.calculators.views import view
from openquake.calculators.export import export, loss_curves
from openquake.calculators.export.hazard import savez
from openquake.commonlib import writers
from openquake.commonlib.util import get_assets, compose_arrays
Output = collections.namedtuple('Output', 'ltype path array')
F32 = numpy.float32
F64 = numpy.float64
U16 = numpy.uint16
U32 = numpy.uint32
stat_dt = numpy.dtype([('mean', F32), ('stddev', F32)])
[docs]def get_rup_data(ebruptures):
    dic = {}
    for ebr in ebruptures:
        point = ebr.rupture.surface.get_middle_point()
        dic[ebr.rup_id] = (ebr.rupture.mag, point.x, point.y, point.z)
    return dic 
# ############################### exporters ############################## #
[docs]def tag2idx(tags):
    return {tag: i for i, tag in enumerate(tags)} 
# this is used by event_based_risk and ebrisk
[docs]@export.add(('agg_curves-rlzs', 'csv'), ('agg_curves-stats', 'csv'))
def export_agg_curve_rlzs(ekey, dstore):
    oq = dstore['oqparam']
    lnames = numpy.array(oq.loss_names)
    if oq.aggregate_by:
        agg_keys = dstore['agg_keys'][:]
    agg_tags = {}
    for tagname in oq.aggregate_by:
        agg_tags[tagname] = numpy.concatenate([agg_keys[tagname], ['*total*']])
    aggvalue = dstore['agg_values'][()]  # shape (K+1, L)
    md = dstore.metadata
    md['risk_investigation_time'] = oq.risk_investigation_time
    writer = writers.CsvWriter(fmt=writers.FIVEDIGITS)
    descr = hdf5.get_shape_descr(dstore[ekey[0]].attrs['json'])
    name, suffix = ekey[0].split('-')
    rlzs_or_stats = descr[suffix[:-1]]
    aw = hdf5.ArrayWrapper(dstore[ekey[0]], descr, ('loss_value',))
    dataf = aw.to_dframe().set_index(suffix[:-1])
    for r, ros in enumerate(rlzs_or_stats):
        md['kind'] = f'{name}-' + (
            ros if isinstance(ros, str) else 'rlz-%03d' % ros)
        try:
            df = dataf[dataf.index == ros]
        except KeyError:
            logging.warning('No data for %s', md['kind'])
            continue
        dic = {col: df[col].to_numpy() for col in dataf.columns}
        dic['loss_type'] = lnames[dic['lti']]
        for tagname in oq.aggregate_by:
            dic[tagname] = agg_tags[tagname][dic['agg_id']]
        dic['loss_ratio'] = dic['loss_value'] / aggvalue[
            dic['agg_id'], dic.pop('lti')]
        dic['annual_frequency_of_exceedence'] = 1 / dic['return_period']
        del dic['agg_id']
        dest = dstore.build_fname(md['kind'], '', 'csv')
        writer.save(pandas.DataFrame(dic), dest, comment=md)
    return writer.getsaved() 
# this is used by ebrisk
[docs]@export.add(('agg_losses-rlzs', 'csv'), ('agg_losses-stats', 'csv'))
def export_agg_losses(ekey, dstore):
    """
    :param ekey: export key, i.e. a pair (datastore key, fmt)
    :param dstore: datastore object
    """
    dskey = ekey[0]
    oq = dstore['oqparam']
    aggregate_by = oq.aggregate_by if dskey.startswith('agg_') else []
    name, value, rlzs_or_stats = _get_data(dstore, dskey, oq.hazard_stats())
    # value has shape (K, R, L)
    writer = writers.CsvWriter(fmt=writers.FIVEDIGITS)
    tagcol = dstore['assetcol/tagcol']
    aggtags = list(tagcol.get_aggkey(aggregate_by).values())
    aggtags.append(('*total*',) * len(aggregate_by))
    expvalue = dstore['agg_values'][()]  # shape (K+1, L)
    tagnames = tuple(aggregate_by)
    header = ('loss_type',) + tagnames + (
        'loss_value', 'exposed_value', 'loss_ratio')
    md = dstore.metadata
    md.update(dict(investigation_time=oq.investigation_time,
              risk_investigation_time=oq.risk_investigation_time))
    for r, ros in enumerate(rlzs_or_stats):
        ros = ros if isinstance(ros, str) else 'rlz-%03d' % ros
        rows = []
        for (k, l), loss in numpy.ndenumerate(value[:, r]):
            if loss:  # many tag combinations are missing
                evalue = expvalue[k, l]
                row = aggtags[k] + (loss, evalue, loss / evalue)
                rows.append((oq.loss_names[l],) + row)
        dest = dstore.build_fname(name, ros, 'csv')
        writer.save(rows, dest, header, comment=md)
    return writer.getsaved() 
def _get_data(dstore, dskey, stats):
    name, kind = dskey.split('-')  # i.e. ('avg_losses', 'stats')
    if kind == 'stats':
        weights = dstore['weights'][()]
        if dskey in set(dstore):  # precomputed
            rlzs_or_stats = list(stats)
            statfuncs = [stats[ros] for ros in stats]
            value = dstore[dskey][()]  # shape (A, S, LI)
        else:  # compute on the fly
            rlzs_or_stats, statfuncs = zip(*stats.items())
            value = compute_stats2(
                dstore[name + '-rlzs'][()], statfuncs, weights)
    else:  # rlzs
        value = dstore[dskey][()]  # shape (A, R, LI)
        R = value.shape[1]
        rlzs_or_stats = ['rlz-%03d' % r for r in range(R)]
    return name, value, rlzs_or_stats
# this is used by event_based_risk, classical_risk and scenario_risk
[docs]@export.add(('avg_losses-rlzs', 'csv'), ('avg_losses-stats', 'csv'))
def export_avg_losses(ekey, dstore):
    """
    :param ekey: export key, i.e. a pair (datastore key, fmt)
    :param dstore: datastore object
    """
    dskey = ekey[0]
    oq = dstore['oqparam']
    dt = [(ln, F32) for ln in oq.loss_names]
    name, value, rlzs_or_stats = _get_data(dstore, dskey, oq.hazard_stats())
    writer = writers.CsvWriter(fmt=writers.FIVEDIGITS)
    assets = get_assets(dstore)
    md = dstore.metadata
    md.update(dict(investigation_time=oq.investigation_time,
                   risk_investigation_time=oq.risk_investigation_time))
    for ros, values in zip(rlzs_or_stats, value.transpose(1, 0, 2)):
        dest = dstore.build_fname(name, ros, 'csv')
        array = numpy.zeros(len(values), dt)
        for li, ln in enumerate(oq.loss_names):
            array[ln] = values[:, li]
        writer.save(compose_arrays(assets, array), dest, comment=md,
                    renamedict=dict(id='asset_id'))
    return writer.getsaved() 
[docs]@export.add(('src_loss_table', 'csv'))
def export_src_loss_table(ekey, dstore):
    """
    :param ekey: export key, i.e. a pair (datastore key, fmt)
    :param dstore: datastore object
    """
    oq = dstore['oqparam']
    md = dstore.metadata
    md.update(dict(investigation_time=oq.investigation_time,
                   risk_investigation_time=oq.risk_investigation_time))
    aw = hdf5.ArrayWrapper.from_(dstore['src_loss_table'], 'loss_value')
    dest = dstore.build_fname('src_loss_table', '', 'csv')
    writer = writers.CsvWriter(fmt=writers.FIVEDIGITS)
    writer.save(aw.to_dframe(), dest, comment=md)
    return writer.getsaved() 
# this is used by scenario_risk, event_based_risk and ebrisk
[docs]@export.add(('agg_loss_table', 'csv'))
def export_agg_loss_table(ekey, dstore):
    """
    :param ekey: export key, i.e. a pair (datastore key, fmt)
    :param dstore: datastore object
    """
    oq = dstore['oqparam']
    writer = writers.CsvWriter(fmt=writers.FIVEDIGITS)
    dest = dstore.build_fname('losses_by_event', '', 'csv')
    md = dstore.metadata
    if 'scenario' not in oq.calculation_mode:
        md.update(dict(investigation_time=oq.investigation_time,
                       risk_investigation_time=oq.risk_investigation_time))
    events = dstore['events'][()]
    try:
        K = dstore.get_attr('agg_loss_table', 'K', 0)
        df = dstore.read_df('agg_loss_table', 'agg_id', dict(agg_id=K))
    except KeyError:  # scenario_damage + consequences
        df = dstore.read_df('losses_by_event')
        ren = {'loss_%d' % li: ln for li, ln in enumerate(oq.loss_names)}
        df.rename(columns=ren, inplace=True)
    evs = events[df.event_id.to_numpy()]
    df['rlz_id'] = evs['rlz_id']
    if oq.investigation_time:  # not scenario
        df['rup_id'] = evs['rup_id']
        df['year'] = evs['year']
    df.sort_values('event_id', inplace=True)
    writer.save(df, dest, comment=md)
    return writer.getsaved() 
def _compact(array):
    # convert an array of shape (a, e) into an array of shape (a,)
    dt = array.dtype
    a, e = array.shape
    lst = []
    for name in dt.names:
        lst.append((name, (dt[name], e)))
    return array.view(numpy.dtype(lst)).reshape(a)
# this is used by classical_risk
[docs]@export.add(('loss_curves-rlzs', 'csv'), ('loss_curves-stats', 'csv'),
            ('loss_curves', 'csv'))
def export_loss_curves(ekey, dstore):
    if '/' in ekey[0]:
        kind = ekey[0].split('/', 1)[1]
    else:
        kind = ekey[0].split('-', 1)[1]  # rlzs or stats
    return loss_curves.LossCurveExporter(dstore).export('csv', kind) 
# used by classical_risk
[docs]@export.add(('loss_maps-rlzs', 'csv'), ('loss_maps-stats', 'csv'))
def export_loss_maps_csv(ekey, dstore):
    kind = ekey[0].split('-')[1]  # rlzs or stats
    assets = get_assets(dstore)
    value = get_loss_maps(dstore, kind)
    oq = dstore['oqparam']
    if kind == 'rlzs':
        rlzs_or_stats = dstore['full_lt'].get_realizations()
    else:
        rlzs_or_stats = oq.hazard_stats()
    writer = writers.CsvWriter(fmt=writers.FIVEDIGITS)
    md = dstore.metadata
    for i, ros in enumerate(rlzs_or_stats):
        if hasattr(ros, 'ordinal'):  # is a realization
            ros = 'rlz-%d' % ros.ordinal
        fname = dstore.build_fname('loss_maps', ros, ekey[1])
        md.update(
            dict(kind=ros, risk_investigation_time=oq.risk_investigation_time))
        writer.save(compose_arrays(assets, value[:, i]), fname, comment=md,
                    renamedict=dict(id='asset_id'))
    return writer.getsaved() 
# used by classical_risk
[docs]@export.add(('loss_maps-rlzs', 'npz'), ('loss_maps-stats', 'npz'))
def export_loss_maps_npz(ekey, dstore):
    kind = ekey[0].split('-')[1]  # rlzs or stats
    assets = get_assets(dstore)
    value = get_loss_maps(dstore, kind)
    R = dstore['full_lt'].get_num_rlzs()
    if kind == 'rlzs':
        rlzs_or_stats = ['rlz-%03d' % r for r in range(R)]
    else:
        oq = dstore['oqparam']
        rlzs_or_stats = oq.hazard_stats()
    fname = dstore.export_path('%s.%s' % ekey)
    dic = {}
    for i, ros in enumerate(rlzs_or_stats):
        dic[ros] = compose_arrays(assets, value[:, i])
    savez(fname, **dic)
    return [fname] 
[docs]def modal_damage_array(data, damage_dt):
    # determine the damage state with the highest probability
    A, L, D = data.shape
    dmgstate = damage_dt['structural'].names
    arr = numpy.zeros(A, [('modal-ds-' + lt, hdf5.vstr)
                          for lt in damage_dt.names])
    for li, loss_type in enumerate(damage_dt.names):
        arr['modal-ds-' + loss_type] = [dmgstate[data[a, li].argmax()]
                                        for a in range(A)]
    return arr 
# used by event_based_damage, scenario_damage, classical_damage
[docs]@export.add(('damages-rlzs', 'csv'), ('damages-stats', 'csv'))
def export_damages_csv(ekey, dstore):
    oq = dstore['oqparam']
    dmg_dt = build_damage_dt(dstore)
    rlzs = dstore['full_lt'].get_realizations()
    data = dstore['damages-rlzs']  # shape (A, R, L, D)
    writer = writers.CsvWriter(fmt='%.6E')
    assets = get_assets(dstore)
    md = dstore.metadata
    if oq.investigation_time:
        md.update(dict(investigation_time=oq.investigation_time,
                       risk_investigation_time=oq.risk_investigation_time))
    event_rates = view('event_rates', dstore)
    data = numpy.array(
        [data[:, r] * event_rates[r] for r in range(len(rlzs))])  # shape RALD
    if ekey[0].endswith('stats'):
        rlzs_or_stats = oq.hazard_stats()
        ws = dstore['weights'][:]
        data = compute_stats(data, rlzs_or_stats.values(), ws)
    else:
        rlzs_or_stats = ['rlz-%03d' % r for r in range(len(rlzs))]
    name = ekey[0].split('-')[0]
    if oq.calculation_mode != 'classical_damage':
        name = 'avg_' + name
    for i, ros in enumerate(rlzs_or_stats):
        if oq.modal_damage_state:
            damages = modal_damage_array(data[i], dmg_dt)
        else:
            damages = build_damage_array(data[i], dmg_dt)
        fname = dstore.build_fname(name, ros, ekey[1])
        writer.save(compose_arrays(assets, damages), fname,
                    comment=md, renamedict=dict(id='asset_id'))
    return writer.getsaved() 
[docs]@export.add(('dmg_by_event', 'csv'))
def export_dmg_by_event(ekey, dstore):
    """
    :param ekey: export key, i.e. a pair (datastore key, fmt)
    :param dstore: datastore object
    """
    damage_dt = build_damage_dt(dstore)
    dt_list = [('event_id', U32), ('rlz_id', U16)] + [
        (f, damage_dt.fields[f][0]) for f in damage_dt.names]
    dmg_by_event = dstore[ekey[0]][()]  # shape E, L, D
    events = dstore['events'][()]
    writer = writers.CsvWriter(fmt='%g')
    fname = dstore.build_fname('dmg_by_event', '', 'csv')
    writer.save(numpy.zeros(0, dt_list), fname)
    with open(fname, 'a') as dest:
        for rlz_id in numpy.unique(events['rlz_id']):
            ok, = numpy.where(events['rlz_id'] == rlz_id)
            arr = numpy.zeros(len(ok), dt_list)
            arr['event_id'] = events['id'][ok]
            arr['rlz_id'] = rlz_id
            for li, loss_type in enumerate(damage_dt.names):
                for d, dmg_state in enumerate(damage_dt[loss_type].names):
                    arr[loss_type][dmg_state] = dmg_by_event[ok, li, d]
            writer.save_block(arr, dest)
    return [fname] 
# emulate a Django point
[docs]class Location(object):
    def __init__(self, x, y):
        self.x, self.y = x, y
        self.wkt = 'POINT(%s %s)' % (x, y) 
[docs]def indices(*sizes):
    return itertools.product(*map(range, sizes)) 
def _to_loss_maps(array, loss_maps_dt):
    # convert a 4D array into a 2D array of dtype loss_maps_dt
    A, R, C, LI = array.shape
    lm = numpy.zeros((A, R), loss_maps_dt)
    for li, name in enumerate(loss_maps_dt.names):
        for p, poe in enumerate(loss_maps_dt[name].names):
            lm[name][poe] = array[:, :, p, li]
    return lm
[docs]def get_loss_maps(dstore, kind):
    """
    :param dstore: a DataStore instance
    :param kind: 'rlzs' or 'stats'
    """
    oq = dstore['oqparam']
    name = 'loss_maps-%s' % kind
    if name in dstore:  # event_based risk
        return _to_loss_maps(dstore[name][()], oq.loss_maps_dt())
    name = 'loss_curves-%s' % kind
    if name in dstore:  # classical_risk
        # the loss maps are built on the fly from the loss curves
        loss_curves = dstore[name]
        loss_maps = scientific.broadcast(
            scientific.loss_maps, loss_curves, oq.conditional_loss_poes)
        return loss_maps
    raise KeyError('loss_maps/loss_curves missing in %s' % dstore) 
agg_dt = numpy.dtype([('unit', (bytes, 6)), ('mean', F32), ('stddev', F32)])
# this is used by scenario_risk
[docs]@export.add(('agglosses', 'csv'))
def export_agglosses(ekey, dstore):
    oq = dstore['oqparam']
    loss_dt = oq.loss_dt()
    cc = dstore['cost_calculator']
    unit_by_lt = cc.units
    unit_by_lt['occupants'] = 'people'
    agglosses = dstore[ekey[0]]
    losses = []
    header = ['rlz_id', 'loss_type', 'unit', 'mean', 'stddev']
    for r in range(len(agglosses)):
        for li, lt in enumerate(loss_dt.names):
            unit = unit_by_lt[lt]
            mean = agglosses[r, li]['mean']
            stddev = agglosses[r, li]['stddev']
            losses.append((r, lt, unit, mean, stddev))
    dest = dstore.build_fname('agglosses', '', 'csv')
    writers.write_csv(dest, losses, header=header, comment=dstore.metadata)
    return [dest] 
AggCurve = collections.namedtuple(
    'AggCurve', ['losses', 'poes', 'average_loss', 'stddev_loss'])
[docs]def get_paths(rlz):
    """
    :param rlz:
        a logic tree realization (composite or simple)
    :returns:
        a dict {'source_model_tree_path': string, 'gsim_tree_path': string}
    """
    dic = {}
    if hasattr(rlz, 'sm_lt_path'):  # composite realization
        dic['source_model_tree_path'] = '_'.join(rlz.sm_lt_path)
        dic['gsim_tree_path'] = '_'.join(rlz.gsim_lt_path)
    else:  # simple GSIM realization
        dic['source_model_tree_path'] = ''
        dic['gsim_tree_path'] = '_'.join(rlz.lt_path)
    return dic 
[docs]@export.add(('bcr-rlzs', 'csv'), ('bcr-stats', 'csv'))
def export_bcr_map(ekey, dstore):
    oq = dstore['oqparam']
    assets = get_assets(dstore)
    bcr_data = dstore[ekey[0]]
    N, R = bcr_data.shape
    if ekey[0].endswith('stats'):
        rlzs_or_stats = oq.hazard_stats()
    else:
        rlzs_or_stats = ['rlz-%03d' % r for r in range(R)]
    fnames = []
    writer = writers.CsvWriter(fmt=writers.FIVEDIGITS)
    for t, ros in enumerate(rlzs_or_stats):
        path = dstore.build_fname('bcr', ros, 'csv')
        writer.save(compose_arrays(assets, bcr_data[:, t]), path,
                    renamedict=dict(id='asset_id'))
        fnames.append(path)
    return writer.getsaved() 
[docs]@export.add(('aggregate_by', 'csv'))
def export_aggregate_by_csv(ekey, dstore):
    """
    :param ekey: export key, i.e. a pair (datastore key, fmt)
    :param dstore: datastore object
    """
    token, what = ekey[0].split('/', 1)
    aw = extract(dstore, 'aggregate/' + what)
    fnames = []
    writer = writers.CsvWriter(fmt=writers.FIVEDIGITS)
    path = '%s.%s' % (sanitize(ekey[0]), ekey[1])
    fname = dstore.export_path(path)
    writer.save(aw.to_dframe(), fname)
    fnames.append(fname)
    return fnames 
[docs]@export.add(('asset_risk', 'csv'))
def export_asset_risk_csv(ekey, dstore):
    """
    :param ekey: export key, i.e. a pair (datastore key, fmt)
    :param dstore: datastore object
    """
    writer = writers.CsvWriter(fmt=writers.FIVEDIGITS)
    path = '%s.%s' % (sanitize(ekey[0]), ekey[1])
    fname = dstore.export_path(path)
    md = json.loads(extract(dstore, 'exposure_metadata').json)
    tostr = {'taxonomy': md['taxonomy']}
    for tagname in md['tagnames']:
        tostr[tagname] = md[tagname]
    tagnames = sorted(set(md['tagnames']) - {'id'})
    arr = extract(dstore, 'asset_risk').array
    rows = []
    lossnames = sorted(name for name in arr.dtype.names if 'loss' in name)
    expnames = [name for name in arr.dtype.names if name not in md['tagnames']
                and 'loss' not in name and name not in 'lon lat']
    colnames = tagnames + ['lon', 'lat'] + expnames + lossnames
    # sanity check
    assert len(colnames) == len(arr.dtype.names)
    for rec in arr:
        row = []
        for name in colnames:
            value = rec[name]
            try:
                row.append(tostr[name][value])
            except KeyError:
                row.append(value)
        rows.append(row)
    writer.save(rows, fname, colnames)
    return [fname] 
[docs]@export.add(('agg_risk', 'csv'))
def export_agg_risk_csv(ekey, dstore):
    """
    :param ekey: export key, i.e. a pair (datastore key, fmt)
    :param dstore: datastore object
    """
    writer = writers.CsvWriter(fmt=writers.FIVEDIGITS)
    path = '%s.%s' % (sanitize(ekey[0]), ekey[1])
    fname = dstore.export_path(path)
    dset = dstore['agg_risk']
    writer.save(dset[()], fname, dset.dtype.names)
    return [fname]