Source code for openquake.calculators.export.risk

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2014-2021 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
import json
import logging
import itertools
import collections
import numpy
import pandas

from openquake.baselib import hdf5
from openquake.hazardlib.stats import compute_stats, compute_stats2
from openquake.risklib import scientific
from openquake.calculators.extract import (
    extract, build_damage_dt, build_damage_array, sanitize)
from openquake.calculators.views import view
from openquake.calculators.export import export, loss_curves
from openquake.calculators.export.hazard import savez
from openquake.commonlib import writers
from openquake.commonlib.util import get_assets, compose_arrays

Output = collections.namedtuple('Output', 'ltype path array')
F32 = numpy.float32
F64 = numpy.float64
U16 = numpy.uint16
U32 = numpy.uint32
stat_dt = numpy.dtype([('mean', F32), ('stddev', F32)])


[docs]def get_rup_data(ebruptures): dic = {} for ebr in ebruptures: point = ebr.rupture.surface.get_middle_point() dic[ebr.rup_id] = (ebr.rupture.mag, point.x, point.y, point.z) return dic
# ############################### exporters ############################## #
[docs]def tag2idx(tags): return {tag: i for i, tag in enumerate(tags)}
# this is used by event_based_risk and ebrisk
[docs]@export.add(('agg_curves-rlzs', 'csv'), ('agg_curves-stats', 'csv')) def export_agg_curve_rlzs(ekey, dstore): oq = dstore['oqparam'] lnames = numpy.array(oq.loss_names) if oq.aggregate_by: agg_keys = dstore['agg_keys'][:] agg_tags = {} for tagname in oq.aggregate_by: agg_tags[tagname] = numpy.concatenate([agg_keys[tagname], ['*total*']]) aggvalue = dstore['agg_values'][()] # shape (K+1, L) md = dstore.metadata md['risk_investigation_time'] = oq.risk_investigation_time writer = writers.CsvWriter(fmt=writers.FIVEDIGITS) descr = hdf5.get_shape_descr(dstore[ekey[0]].attrs['json']) name, suffix = ekey[0].split('-') rlzs_or_stats = descr[suffix[:-1]] aw = hdf5.ArrayWrapper(dstore[ekey[0]], descr, ('loss_value',)) dataf = aw.to_dframe().set_index(suffix[:-1]) for r, ros in enumerate(rlzs_or_stats): md['kind'] = f'{name}-' + ( ros if isinstance(ros, str) else 'rlz-%03d' % ros) try: df = dataf[dataf.index == ros] except KeyError: logging.warning('No data for %s', md['kind']) continue dic = {col: df[col].to_numpy() for col in dataf.columns} dic['loss_type'] = lnames[dic['lti']] for tagname in oq.aggregate_by: dic[tagname] = agg_tags[tagname][dic['agg_id']] dic['loss_ratio'] = dic['loss_value'] / aggvalue[ dic['agg_id'], dic.pop('lti')] dic['annual_frequency_of_exceedence'] = 1 / dic['return_period'] del dic['agg_id'] dest = dstore.build_fname(md['kind'], '', 'csv') writer.save(pandas.DataFrame(dic), dest, comment=md) return writer.getsaved()
# this is used by ebrisk
[docs]@export.add(('agg_losses-rlzs', 'csv'), ('agg_losses-stats', 'csv')) def export_agg_losses(ekey, dstore): """ :param ekey: export key, i.e. a pair (datastore key, fmt) :param dstore: datastore object """ dskey = ekey[0] oq = dstore['oqparam'] aggregate_by = oq.aggregate_by if dskey.startswith('agg_') else [] name, value, rlzs_or_stats = _get_data(dstore, dskey, oq.hazard_stats()) # value has shape (K, R, L) writer = writers.CsvWriter(fmt=writers.FIVEDIGITS) tagcol = dstore['assetcol/tagcol'] aggtags = list(tagcol.get_aggkey(aggregate_by).values()) aggtags.append(('*total*',) * len(aggregate_by)) expvalue = dstore['agg_values'][()] # shape (K+1, L) tagnames = tuple(aggregate_by) header = ('loss_type',) + tagnames + ( 'loss_value', 'exposed_value', 'loss_ratio') md = dstore.metadata md.update(dict(investigation_time=oq.investigation_time, risk_investigation_time=oq.risk_investigation_time)) for r, ros in enumerate(rlzs_or_stats): ros = ros if isinstance(ros, str) else 'rlz-%03d' % ros rows = [] for (k, l), loss in numpy.ndenumerate(value[:, r]): if loss: # many tag combinations are missing evalue = expvalue[k, l] row = aggtags[k] + (loss, evalue, loss / evalue) rows.append((oq.loss_names[l],) + row) dest = dstore.build_fname(name, ros, 'csv') writer.save(rows, dest, header, comment=md) return writer.getsaved()
def _get_data(dstore, dskey, stats): name, kind = dskey.split('-') # i.e. ('avg_losses', 'stats') if kind == 'stats': weights = dstore['weights'][()] if dskey in set(dstore): # precomputed rlzs_or_stats = list(stats) statfuncs = [stats[ros] for ros in stats] value = dstore[dskey][()] # shape (A, S, LI) else: # compute on the fly rlzs_or_stats, statfuncs = zip(*stats.items()) value = compute_stats2( dstore[name + '-rlzs'][()], statfuncs, weights) else: # rlzs value = dstore[dskey][()] # shape (A, R, LI) R = value.shape[1] rlzs_or_stats = ['rlz-%03d' % r for r in range(R)] return name, value, rlzs_or_stats # this is used by event_based_risk, classical_risk and scenario_risk
[docs]@export.add(('avg_losses-rlzs', 'csv'), ('avg_losses-stats', 'csv')) def export_avg_losses(ekey, dstore): """ :param ekey: export key, i.e. a pair (datastore key, fmt) :param dstore: datastore object """ dskey = ekey[0] oq = dstore['oqparam'] dt = [(ln, F32) for ln in oq.loss_names] name, value, rlzs_or_stats = _get_data(dstore, dskey, oq.hazard_stats()) writer = writers.CsvWriter(fmt=writers.FIVEDIGITS) assets = get_assets(dstore) md = dstore.metadata md.update(dict(investigation_time=oq.investigation_time, risk_investigation_time=oq.risk_investigation_time)) for ros, values in zip(rlzs_or_stats, value.transpose(1, 0, 2)): dest = dstore.build_fname(name, ros, 'csv') array = numpy.zeros(len(values), dt) for li, ln in enumerate(oq.loss_names): array[ln] = values[:, li] writer.save(compose_arrays(assets, array), dest, comment=md, renamedict=dict(id='asset_id')) return writer.getsaved()
[docs]@export.add(('src_loss_table', 'csv')) def export_src_loss_table(ekey, dstore): """ :param ekey: export key, i.e. a pair (datastore key, fmt) :param dstore: datastore object """ oq = dstore['oqparam'] md = dstore.metadata md.update(dict(investigation_time=oq.investigation_time, risk_investigation_time=oq.risk_investigation_time)) aw = hdf5.ArrayWrapper.from_(dstore['src_loss_table'], 'loss_value') dest = dstore.build_fname('src_loss_table', '', 'csv') writer = writers.CsvWriter(fmt=writers.FIVEDIGITS) writer.save(aw.to_dframe(), dest, comment=md) return writer.getsaved()
# this is used by scenario_risk, event_based_risk and ebrisk
[docs]@export.add(('agg_loss_table', 'csv')) def export_agg_loss_table(ekey, dstore): """ :param ekey: export key, i.e. a pair (datastore key, fmt) :param dstore: datastore object """ oq = dstore['oqparam'] writer = writers.CsvWriter(fmt=writers.FIVEDIGITS) dest = dstore.build_fname('losses_by_event', '', 'csv') md = dstore.metadata if 'scenario' not in oq.calculation_mode: md.update(dict(investigation_time=oq.investigation_time, risk_investigation_time=oq.risk_investigation_time)) events = dstore['events'][()] try: K = dstore.get_attr('agg_loss_table', 'K', 0) df = dstore.read_df('agg_loss_table', 'agg_id', dict(agg_id=K)) except KeyError: # scenario_damage + consequences df = dstore.read_df('losses_by_event') ren = {'loss_%d' % li: ln for li, ln in enumerate(oq.loss_names)} df.rename(columns=ren, inplace=True) evs = events[df.event_id.to_numpy()] df['rlz_id'] = evs['rlz_id'] if oq.investigation_time: # not scenario df['rup_id'] = evs['rup_id'] df['year'] = evs['year'] df.sort_values('event_id', inplace=True) writer.save(df, dest, comment=md) return writer.getsaved()
def _compact(array): # convert an array of shape (a, e) into an array of shape (a,) dt = array.dtype a, e = array.shape lst = [] for name in dt.names: lst.append((name, (dt[name], e))) return array.view(numpy.dtype(lst)).reshape(a) # this is used by classical_risk
[docs]@export.add(('loss_curves-rlzs', 'csv'), ('loss_curves-stats', 'csv'), ('loss_curves', 'csv')) def export_loss_curves(ekey, dstore): if '/' in ekey[0]: kind = ekey[0].split('/', 1)[1] else: kind = ekey[0].split('-', 1)[1] # rlzs or stats return loss_curves.LossCurveExporter(dstore).export('csv', kind)
# used by classical_risk
[docs]@export.add(('loss_maps-rlzs', 'csv'), ('loss_maps-stats', 'csv')) def export_loss_maps_csv(ekey, dstore): kind = ekey[0].split('-')[1] # rlzs or stats assets = get_assets(dstore) value = get_loss_maps(dstore, kind) oq = dstore['oqparam'] if kind == 'rlzs': rlzs_or_stats = dstore['full_lt'].get_realizations() else: rlzs_or_stats = oq.hazard_stats() writer = writers.CsvWriter(fmt=writers.FIVEDIGITS) md = dstore.metadata for i, ros in enumerate(rlzs_or_stats): if hasattr(ros, 'ordinal'): # is a realization ros = 'rlz-%d' % ros.ordinal fname = dstore.build_fname('loss_maps', ros, ekey[1]) md.update( dict(kind=ros, risk_investigation_time=oq.risk_investigation_time)) writer.save(compose_arrays(assets, value[:, i]), fname, comment=md, renamedict=dict(id='asset_id')) return writer.getsaved()
# used by classical_risk
[docs]@export.add(('loss_maps-rlzs', 'npz'), ('loss_maps-stats', 'npz')) def export_loss_maps_npz(ekey, dstore): kind = ekey[0].split('-')[1] # rlzs or stats assets = get_assets(dstore) value = get_loss_maps(dstore, kind) R = dstore['full_lt'].get_num_rlzs() if kind == 'rlzs': rlzs_or_stats = ['rlz-%03d' % r for r in range(R)] else: oq = dstore['oqparam'] rlzs_or_stats = oq.hazard_stats() fname = dstore.export_path('%s.%s' % ekey) dic = {} for i, ros in enumerate(rlzs_or_stats): dic[ros] = compose_arrays(assets, value[:, i]) savez(fname, **dic) return [fname]
# used by event_based_damage, scenario_damage, classical_damage
[docs]@export.add(('damages-rlzs', 'csv'), ('damages-stats', 'csv')) def export_damages_csv(ekey, dstore): oq = dstore['oqparam'] dmg_dt = build_damage_dt(dstore) rlzs = dstore['full_lt'].get_realizations() data = dstore['damages-rlzs'] # shape (A, R, L, D) writer = writers.CsvWriter(fmt='%.6E') assets = get_assets(dstore) md = dstore.metadata if oq.investigation_time: md.update(dict(investigation_time=oq.investigation_time, risk_investigation_time=oq.risk_investigation_time)) event_rates = view('event_rates', dstore) data = numpy.array( [data[:, r] * event_rates[r] for r in range(len(rlzs))]) # shape RALD if ekey[0].endswith('stats'): rlzs_or_stats = oq.hazard_stats() ws = dstore['weights'][:] data = compute_stats(data, rlzs_or_stats.values(), ws) else: rlzs_or_stats = ['rlz-%03d' % r for r in range(len(rlzs))] name = ekey[0].split('-')[0] if oq.calculation_mode != 'classical_damage': name = 'avg_' + name for i, ros in enumerate(rlzs_or_stats): if oq.modal_damage_state: damages = modal_damage_array(data[i], dmg_dt) else: damages = build_damage_array(data[i], dmg_dt) fname = dstore.build_fname(name, ros, ekey[1]) writer.save(compose_arrays(assets, damages), fname, comment=md, renamedict=dict(id='asset_id')) return writer.getsaved()
[docs]@export.add(('dmg_by_event', 'csv')) def export_dmg_by_event(ekey, dstore): """ :param ekey: export key, i.e. a pair (datastore key, fmt) :param dstore: datastore object """ damage_dt = build_damage_dt(dstore) dt_list = [('event_id', U32), ('rlz_id', U16)] + [ (f, damage_dt.fields[f][0]) for f in damage_dt.names] dmg_by_event = dstore[ekey[0]][()] # shape E, L, D events = dstore['events'][()] writer = writers.CsvWriter(fmt='%g') fname = dstore.build_fname('dmg_by_event', '', 'csv') writer.save(numpy.zeros(0, dt_list), fname) with open(fname, 'a') as dest: for rlz_id in numpy.unique(events['rlz_id']): ok, = numpy.where(events['rlz_id'] == rlz_id) arr = numpy.zeros(len(ok), dt_list) arr['event_id'] = events['id'][ok] arr['rlz_id'] = rlz_id for li, loss_type in enumerate(damage_dt.names): for d, dmg_state in enumerate(damage_dt[loss_type].names): arr[loss_type][dmg_state] = dmg_by_event[ok, li, d] writer.save_block(arr, dest) return [fname]
# emulate a Django point
[docs]class Location(object): def __init__(self, x, y): self.x, self.y = x, y self.wkt = 'POINT(%s %s)' % (x, y)
[docs]def indices(*sizes): return itertools.product(*map(range, sizes))
def _to_loss_maps(array, loss_maps_dt): # convert a 4D array into a 2D array of dtype loss_maps_dt A, R, C, LI = array.shape lm = numpy.zeros((A, R), loss_maps_dt) for li, name in enumerate(loss_maps_dt.names): for p, poe in enumerate(loss_maps_dt[name].names): lm[name][poe] = array[:, :, p, li] return lm
[docs]def get_loss_maps(dstore, kind): """ :param dstore: a DataStore instance :param kind: 'rlzs' or 'stats' """ oq = dstore['oqparam'] name = 'loss_maps-%s' % kind if name in dstore: # event_based risk return _to_loss_maps(dstore[name][()], oq.loss_maps_dt()) name = 'loss_curves-%s' % kind if name in dstore: # classical_risk # the loss maps are built on the fly from the loss curves loss_curves = dstore[name] loss_maps = scientific.broadcast( scientific.loss_maps, loss_curves, oq.conditional_loss_poes) return loss_maps raise KeyError('loss_maps/loss_curves missing in %s' % dstore)
agg_dt = numpy.dtype([('unit', (bytes, 6)), ('mean', F32), ('stddev', F32)]) # this is used by scenario_risk
[docs]@export.add(('agglosses', 'csv')) def export_agglosses(ekey, dstore): oq = dstore['oqparam'] loss_dt = oq.loss_dt() cc = dstore['cost_calculator'] unit_by_lt = cc.units unit_by_lt['occupants'] = 'people' agglosses = dstore[ekey[0]] losses = [] header = ['rlz_id', 'loss_type', 'unit', 'mean', 'stddev'] for r in range(len(agglosses)): for li, lt in enumerate(loss_dt.names): unit = unit_by_lt[lt] mean = agglosses[r, li]['mean'] stddev = agglosses[r, li]['stddev'] losses.append((r, lt, unit, mean, stddev)) dest = dstore.build_fname('agglosses', '', 'csv') writers.write_csv(dest, losses, header=header, comment=dstore.metadata) return [dest]
AggCurve = collections.namedtuple( 'AggCurve', ['losses', 'poes', 'average_loss', 'stddev_loss'])
[docs]def get_paths(rlz): """ :param rlz: a logic tree realization (composite or simple) :returns: a dict {'source_model_tree_path': string, 'gsim_tree_path': string} """ dic = {} if hasattr(rlz, 'sm_lt_path'): # composite realization dic['source_model_tree_path'] = '_'.join(rlz.sm_lt_path) dic['gsim_tree_path'] = '_'.join(rlz.gsim_lt_path) else: # simple GSIM realization dic['source_model_tree_path'] = '' dic['gsim_tree_path'] = '_'.join(rlz.lt_path) return dic
[docs]@export.add(('bcr-rlzs', 'csv'), ('bcr-stats', 'csv')) def export_bcr_map(ekey, dstore): oq = dstore['oqparam'] assets = get_assets(dstore) bcr_data = dstore[ekey[0]] N, R = bcr_data.shape if ekey[0].endswith('stats'): rlzs_or_stats = oq.hazard_stats() else: rlzs_or_stats = ['rlz-%03d' % r for r in range(R)] fnames = [] writer = writers.CsvWriter(fmt=writers.FIVEDIGITS) for t, ros in enumerate(rlzs_or_stats): path = dstore.build_fname('bcr', ros, 'csv') writer.save(compose_arrays(assets, bcr_data[:, t]), path, renamedict=dict(id='asset_id')) fnames.append(path) return writer.getsaved()
[docs]@export.add(('aggregate_by', 'csv')) def export_aggregate_by_csv(ekey, dstore): """ :param ekey: export key, i.e. a pair (datastore key, fmt) :param dstore: datastore object """ token, what = ekey[0].split('/', 1) aw = extract(dstore, 'aggregate/' + what) fnames = [] writer = writers.CsvWriter(fmt=writers.FIVEDIGITS) path = '%s.%s' % (sanitize(ekey[0]), ekey[1]) fname = dstore.export_path(path) writer.save(aw.to_dframe(), fname) fnames.append(fname) return fnames
[docs]@export.add(('asset_risk', 'csv')) def export_asset_risk_csv(ekey, dstore): """ :param ekey: export key, i.e. a pair (datastore key, fmt) :param dstore: datastore object """ writer = writers.CsvWriter(fmt=writers.FIVEDIGITS) path = '%s.%s' % (sanitize(ekey[0]), ekey[1]) fname = dstore.export_path(path) md = json.loads(extract(dstore, 'exposure_metadata').json) tostr = {'taxonomy': md['taxonomy']} for tagname in md['tagnames']: tostr[tagname] = md[tagname] tagnames = sorted(set(md['tagnames']) - {'id'}) arr = extract(dstore, 'asset_risk').array rows = [] lossnames = sorted(name for name in arr.dtype.names if 'loss' in name) expnames = [name for name in arr.dtype.names if name not in md['tagnames'] and 'loss' not in name and name not in 'lon lat'] colnames = tagnames + ['lon', 'lat'] + expnames + lossnames # sanity check assert len(colnames) == len(arr.dtype.names) for rec in arr: row = [] for name in colnames: value = rec[name] try: row.append(tostr[name][value]) except KeyError: row.append(value) rows.append(row) writer.save(rows, fname, colnames) return [fname]
[docs]@export.add(('agg_risk', 'csv')) def export_agg_risk_csv(ekey, dstore): """ :param ekey: export key, i.e. a pair (datastore key, fmt) :param dstore: datastore object """ writer = writers.CsvWriter(fmt=writers.FIVEDIGITS) path = '%s.%s' % (sanitize(ekey[0]), ekey[1]) fname = dstore.export_path(path) dset = dstore['agg_risk'] writer.save(dset[()], fname, dset.dtype.names) return [fname]