# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
# Copyright (C) 2015-2021 GEM Foundation
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
import os
import time
import pickle
import getpass
import operator
import itertools
from datetime import datetime
import psutil
import numpy
from openquake.baselib.general import humansize
from openquake.baselib import hdf5
# NB: one can use vstr fields in extensible datasets, but then reading
# them on-the-fly in SWMR mode will fail with an OSError:
# Can't read data (address of object past end of allocation)
# this is why below I am using '<S50' byte strings
perf_dt = numpy.dtype([('operation', '<S50'), ('time_sec', float),
('memory_mb', float), ('counts', int),
('task_no', numpy.int16)])
task_info_dt = numpy.dtype(
[('taskname', '<S50'), ('task_no', numpy.uint32),
('weight', numpy.float32), ('duration', numpy.float32),
('received', numpy.int64), ('mem_gb', numpy.float32)])
def _pairs(items):
lst = []
for name, value in items:
if isinstance(value, dict):
for k, v in value.items():
lst.append(('%s.%s' % (name, k), repr(v)))
else:
lst.append((name, repr(value)))
return sorted(lst)
# this is not thread-safe
[docs]class Monitor(object):
"""
Measure the resident memory occupied by a list of processes during
the execution of a block of code. Should be used as a context manager,
as follows::
with Monitor('do_something') as mon:
do_something()
print mon.mem
At the end of the block the Monitor object will have the
following 5 public attributes:
.start_time: when the monitor started (a datetime object)
.duration: time elapsed between start and stop (in seconds)
.exc: usually None; otherwise the exception happened in the `with` block
.mem: the memory delta in bytes
The behaviour of the Monitor can be customized by subclassing it
and by overriding the method on_exit(), called at end and used to display
or store the results of the analysis.
NB: if the .address attribute is set, it is possible for the monitor to
send commands to that address, assuming there is a
:class:`multiprocessing.connection.Listener` listening.
"""
address = None
authkey = None
calc_id = None
def __init__(self, operation='', measuremem=False, inner_loop=False,
h5=None):
self.operation = operation
self.measuremem = measuremem
self.inner_loop = inner_loop
self.h5 = h5
self.mem = 0
self.duration = 0
self._start_time = self._stop_time = time.time()
self.children = []
self.counts = 0
self.address = None
self.username = getpass.getuser()
self.task_no = -1 # overridden in parallel
@property
def dt(self):
"""Last time interval measured"""
return self._stop_time - self._start_time
[docs] def measure_mem(self):
"""A memory measurement (in bytes)"""
try:
return memory_rss(os.getpid())
except psutil.AccessDenied:
# no access to information about this process
pass
@property
def start_time(self):
"""
Datetime instance recording when the monitoring started
"""
return datetime.fromtimestamp(self._start_time)
[docs] def get_data(self):
"""
:returns:
an array of dtype perf_dt, with the information
of the monitor (operation, time_sec, memory_mb, counts);
the lenght of the array can be 0 (for counts=0) or 1 (otherwise).
"""
data = []
if self.counts:
time_sec = self.duration
memory_mb = self.mem / 1024. / 1024. if self.measuremem else 0
data.append((self.operation, time_sec, memory_mb, self.counts,
self.task_no))
return numpy.array(data, perf_dt)
def __enter__(self):
self.exc = None # exception
self._start_time = time.time()
if self.measuremem:
self.start_mem = self.measure_mem()
return self
def __exit__(self, etype, exc, tb):
self.exc = exc
if self.measuremem:
self.stop_mem = self.measure_mem()
self.mem += self.stop_mem - self.start_mem
self._stop_time = time.time()
self.duration += self._stop_time - self._start_time
self.counts += 1
if self.h5:
self.flush(self.h5)
[docs] def save_task_info(self, h5, res, name, mem_gb=0):
"""
Called by parallel.IterResult.
:param h5: where to save the info
:param res: a :class:`Result` object
:param name: name of the task function
:param mem_gb: memory consumption at the saving time (optional)
"""
t = (name, self.task_no, self.weight, self.duration, len(res.pik),
mem_gb)
data = numpy.array([t], task_info_dt)
hdf5.extend(h5['task_info'], data)
h5['task_info'].flush() # notify the reader
[docs] def reset(self):
"""
Reset duration, mem, counts
"""
self.duration = 0
self.mem = 0
self.counts = 0
[docs] def flush(self, h5):
"""
Save the measurements on the performance file
"""
if not self.children:
data = self.get_data()
else:
lst = [self.get_data()]
for child in self.children:
lst.append(child.get_data())
child.reset()
data = numpy.concatenate(lst)
if len(data) == 0: # no information
return
hdf5.extend(h5['performance_data'], data)
h5['performance_data'].flush() # notify the reader
self.reset()
# TODO: rename this as spawn; see what will break
def __call__(self, operation='no operation', **kw):
"""
Return a child of the monitor usable for a different operation.
"""
child = self.new(operation, **kw)
self.children.append(child)
return child
[docs] def new(self, operation='no operation', **kw):
"""
Return a copy of the monitor usable for a different operation.
"""
new = object.__new__(self.__class__)
vars(new).update(vars(self), operation=operation, children=[],
counts=0, mem=0, duration=0)
vars(new).update(kw)
return new
[docs] def save(self, key, obj):
"""
:param key: key in the _tmp.hdf5 file
:param obj: big object to store in pickle format
:returns: True is saved, False if not because the key was taken
"""
tmp = self.filename[:-5] + '_tmp.hdf5'
f = hdf5.File(tmp, 'a') if os.path.exists(tmp) else hdf5.File(tmp, 'w')
with f:
if key in f: # already saved
return False
if isinstance(obj, numpy.ndarray):
f[key] = obj
else:
f[key] = pickle.dumps(obj, protocol=pickle.HIGHEST_PROTOCOL)
return True
[docs] def read(self, key):
"""
:param key: key in the _tmp.hdf5 file
:return: unpickled object
"""
tmp = self.filename[:-5] + '_tmp.hdf5'
with hdf5.File(tmp, 'r') as f:
data = f[key][()]
if data.shape:
return data
return pickle.loads(data)
def __repr__(self):
calc_id = ' #%s ' % self.calc_id if self.calc_id else ' '
msg = '%s%s%s[%s]' % (self.__class__.__name__, calc_id,
self.operation, self.username)
if self.measuremem:
return '<%s, duration=%ss, memory=%s>' % (
msg, self.duration, humansize(self.mem))
elif self.duration:
return '<%s, duration=%ss, counts=%s>' % (
msg, self.duration, self.counts)
else:
return '<%s>' % msg