# -*- coding: utf-8 -*-
#-------------------------------------------------------------------
# Filename: beachball.py
# Purpose: Draws a beach ball diagram of an earthquake focal mechanism.
# Author: Robert Barsch
# Email: barsch@geophysik.uni-muenchen.de
#
# Copyright (C) 2008-2012 Robert Barsch
#---------------------------------------------------------------------
"""
Draws a beachball diagram of an earthquake focal mechanism
Most source code provided here are adopted from
1. MatLab script `bb.m`_ written by Andy Michael and Oliver Boyd.
2. ps_meca program from the `Generic Mapping Tools (GMT)`_.
:copyright:
The ObsPy Development Team (devs@obspy.org)
:license:
GNU General Public License (GPL)
(http://www.gnu.org/licenses/gpl.txt)
.. _`Generic Mapping Tools (GMT)`: http://gmt.soest.hawaii.edu
.. _`bb.m`: http://www.ceri.memphis.edu/people/olboyd/Software/Software.html
"""
import matplotlib.pyplot as plt
from matplotlib import patches, collections, transforms, path as mplpath
import numpy as np
D2R = np.pi / 180
R2D = 180 / np.pi
EPSILON = 0.00001
[docs]def Beach(fm, linewidth=2, facecolor='b', bgcolor='w', edgecolor='k',
alpha=1.0, xy=(0, 0), width=200, size=100, nofill=False,
zorder=100, axes=None):
"""
Return a beach ball as a collection which can be connected to an
current matplotlib axes instance (ax.add_collection).
S1, D1, and R1, the strike, dip and rake of one of the focal planes, can
be vectors of multiple focal mechanisms.
:param fm: Focal mechanism that is either number of mechanisms (NM) by 3
(strike, dip, and rake) or NM x 6 (M11, M22, M33, M12, M13, M23 - the
six independent components of the moment tensor, where the coordinate
system is 1,2,3 = Up,South,East which equals r,theta,phi). The strike
is of the first plane, clockwise relative to north.
The dip is of the first plane, defined clockwise and perpendicular to
strike, relative to horizontal such that 0 is horizontal and 90 is
vertical. The rake is of the first focal plane solution. 90 moves the
hanging wall up-dip (thrust), 0 moves it in the strike direction
(left-lateral), -90 moves it down-dip (normal), and 180 moves it
opposite to strike (right-lateral).
:param facecolor: Color to use for quadrants of tension; can be a string,
e.g. ``'r'``, ``'b'`` or three component color vector, [R G B].
Defaults to ``'b'`` (blue).
:param bgcolor: The background color. Defaults to ``'w'`` (white).
:param edgecolor: Color of the edges. Defaults to ``'k'`` (black).
:param alpha: The alpha level of the beach ball. Defaults to ``1.0``
(opaque).
:param xy: Origin position of the beach ball as tuple. Defaults to
``(0, 0)``.
:type width: int or tuple
:param width: Symbol size of beach ball, or tuple for elliptically
shaped patches. Defaults to size ``200``.
:param size: Controls the number of interpolation points for the
curves. Minimum is automatically set to ``100``.
:param nofill: Do not fill the beach ball, but only plot the planes.
:param zorder: Set zorder. Artists with lower zorder values are drawn
first.
:type axes: :class:`matplotlib.axes.Axes`
:param axes: Used to make beach balls circular on non-scaled axes. Also
maintains the aspect ratio when resizing the figure. Will not add
the returned collection to the axes instance.
"""
# check if one or two widths are specified (Circle or Ellipse)
try:
assert(len(width) == 2)
except TypeError:
width = (width, width)
mt = None
np1 = None
if isinstance(fm, MomentTensor):
mt = fm
np1 = MT2Plane(mt)
elif isinstance(fm, NodalPlane):
np1 = fm
elif len(fm) == 6:
mt = MomentTensor(fm[0], fm[1], fm[2], fm[3], fm[4], fm[5], 0)
np1 = MT2Plane(mt)
elif len(fm) == 3:
np1 = NodalPlane(fm[0], fm[1], fm[2])
else:
raise TypeError("Wrong input value for 'fm'.")
# Only at least size 100, i.e. 100 points in the matrix are allowed
if size < 100:
size = 100
# Return as collection
if mt:
(T, N, P) = MT2Axes(mt)
if np.fabs(N.val) < EPSILON and np.fabs(T.val + P.val) < EPSILON:
colors, p = plotDC(np1, size, xy=xy, width=width)
else:
colors, p = plotMT(T, N, P, size,
plot_zerotrace=True, xy=xy, width=width)
else:
colors, p = plotDC(np1, size=size, xy=xy, width=width)
if nofill:
# XXX: not tested with plotMT
col = collections.PatchCollection([p[1]], match_original=False)
col.set_facecolor('none')
else:
col = collections.PatchCollection(p, match_original=False)
# Replace color dummies 'b' and 'w' by face and bgcolor
fc = [facecolor if c == 'b' else bgcolor for c in colors]
col.set_facecolors(fc)
# Use the given axes to maintain the aspect ratio of beachballs on figure
# resize.
if axes is not None:
# This is what holds the aspect ratio (but breaks the positioning)
col.set_transform(transforms.IdentityTransform())
# Next is a dirty hack to fix the positioning:
# 1. Need to bring the all patches to the origin (0, 0).
for p in col._paths:
p.vertices -= xy
# 2. Then use the offset property of the collection to position the
# patches
col.set_offsets(xy)
col._transOffset = axes.transData
col.set_edgecolor(edgecolor)
col.set_alpha(alpha)
col.set_linewidth(linewidth)
col.set_zorder(zorder)
return col
[docs]def Beachball(fm, linewidth=2, facecolor='b', bgcolor='w', edgecolor='k',
alpha=1.0, xy=(0, 0), width=200, size=100, nofill=False,
zorder=100, outfile=None, format=None, fig=None):
"""
Draws a beach ball diagram of an earthquake focal mechanism.
S1, D1, and R1, the strike, dip and rake of one of the focal planes, can
be vectors of multiple focal mechanisms.
:param fm: Focal mechanism that is either number of mechanisms (NM) by 3
(strike, dip, and rake) or NM x 6 (M11, M22, M33, M12, M13, M23 - the
six independent components of the moment tensor, where the coordinate
system is 1,2,3 = Up,South,East which equals r,theta,phi). The strike
is of the first plane, clockwise relative to north.
The dip is of the first plane, defined clockwise and perpendicular to
strike, relative to horizontal such that 0 is horizontal and 90 is
vertical. The rake is of the first focal plane solution. 90 moves the
hanging wall up-dip (thrust), 0 moves it in the strike direction
(left-lateral), -90 moves it down-dip (normal), and 180 moves it
opposite to strike (right-lateral).
:param facecolor: Color to use for quadrants of tension; can be a string,
e.g. ``'r'``, ``'b'`` or three component color vector, [R G B].
Defaults to ``'b'`` (blue).
:param bgcolor: The background color. Defaults to ``'w'`` (white).
:param edgecolor: Color of the edges. Defaults to ``'k'`` (black).
:param alpha: The alpha level of the beach ball. Defaults to ``1.0``
(opaque).
:param xy: Origin position of the beach ball as tuple. Defaults to
``(0, 0)``.
:type width: int
:param width: Symbol size of beach ball. Defaults to ``200``.
:param size: Controls the number of interpolation points for the
curves. Minimum is automatically set to ``100``.
:param nofill: Do not fill the beach ball, but only plot the planes.
:param zorder: Set zorder. Artists with lower zorder values are drawn
first.
:param outfile: Output file string. Also used to automatically
determine the output format. Supported file formats depend on your
matplotlib backend. Most backends support png, pdf, ps, eps and
svg. Defaults to ``None``.
:param format: Format of the graph picture. If no format is given the
outfile parameter will be used to try to automatically determine
the output format. If no format is found it defaults to png output.
If no outfile is specified but a format is, than a binary
imagestring will be returned.
Defaults to ``None``.
:param fig: Give an existing figure instance to plot into. New Figure if
set to ``None``.
"""
plot_width = width * 0.95
# plot the figure
if not fig:
fig = plt.figure(figsize=(3, 3), dpi=100)
fig.subplots_adjust(left=0, bottom=0, right=1, top=1)
fig.set_figheight(width // 100)
fig.set_figwidth(width // 100)
ax = fig.add_subplot(111, aspect='equal')
# hide axes + ticks
ax.axison = False
# plot the collection
collection = Beach(fm, linewidth=linewidth, facecolor=facecolor,
edgecolor=edgecolor, bgcolor=bgcolor,
alpha=alpha, nofill=nofill, xy=xy,
width=plot_width, size=size, zorder=zorder)
ax.add_collection(collection)
ax.autoscale_view(tight=False, scalex=True, scaley=True)
# export
if outfile:
if format:
fig.savefig(outfile, dpi=100, transparent=True, format=format)
else:
fig.savefig(outfile, dpi=100, transparent=True)
elif format and not outfile:
imgdata = compatibility.BytesIO()
fig.savefig(imgdata, format=format, dpi=100, transparent=True)
imgdata.seek(0)
return imgdata.read()
else:
plt.show()
return fig
[docs]def plotMT(T, N, P, size=200, plot_zerotrace=True,
x0=0, y0=0, xy=(0, 0), width=200):
"""
Uses a principal axis T, N and P to draw a beach ball plot.
:param ax: axis object of a matplotlib figure
:param T: :class:`~PrincipalAxis`
:param N: :class:`~PrincipalAxis`
:param P: :class:`~PrincipalAxis`
Adapted from ps_tensor / utilmeca.c / `Generic Mapping Tools (GMT)`_.
.. _`Generic Mapping Tools (GMT)`: http://gmt.soest.hawaii.edu
"""
# check if one or two widths are specified (Circle or Ellipse)
try:
assert(len(width) == 2)
except TypeError:
width = (width, width)
collect = []
colors = []
res = [value / float(size) for value in width]
b = 1
big_iso = 0
j = 1
j2 = 0
j3 = 0
n = 0
azi = np.zeros((3, 2))
x = np.zeros(400)
y = np.zeros(400)
x2 = np.zeros(400)
y2 = np.zeros(400)
x3 = np.zeros(400)
y3 = np.zeros(400)
xp1 = np.zeros(800)
yp1 = np.zeros(800)
xp2 = np.zeros(400)
yp2 = np.zeros(400)
a = np.zeros(3)
p = np.zeros(3)
v = np.zeros(3)
a[0] = T.strike
a[1] = N.strike
a[2] = P.strike
p[0] = T.dip
p[1] = N.dip
p[2] = P.dip
v[0] = T.val
v[1] = N.val
v[2] = P.val
vi = (v[0] + v[1] + v[2]) / 3.
for i in range(0, 3):
v[i] = v[i] - vi
radius_size = size * 0.5
if np.fabs(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]) < EPSILON:
# pure implosion-explosion
if vi > 0.:
cir = patches.Ellipse(xy, width=width[0], height=width[1])
collect.append(cir)
colors.append('b')
if vi < 0.:
cir = patches.Ellipse(xy, width=width[0], height=width[1])
collect.append(cir)
colors.append('w')
return colors, collect
if np.fabs(v[0]) >= np.fabs(v[2]):
d = 0
m = 2
else:
d = 2
m = 0
if (plot_zerotrace):
vi = 0.
f = -v[1] / float(v[d])
iso = vi / float(v[d])
# Cliff Frohlich, Seismological Research letters,
# Vol 7, Number 1, January-February, 1996
# Unless the isotropic parameter lies in the range
# between -1 and 1 - f there will be no nodes whatsoever
if iso < -1:
cir = patches.Ellipse(xy, width=width[0], height=width[1])
collect.append(cir)
colors.append('w')
return colors, collect
elif iso > 1 - f:
cir = patches.Ellipse(xy, width=width[0], height=width[1])
collect.append(cir)
colors.append('b')
return colors, collect
spd = np.sin(p[d] * D2R)
cpd = np.cos(p[d] * D2R)
spb = np.sin(p[b] * D2R)
cpb = np.cos(p[b] * D2R)
spm = np.sin(p[m] * D2R)
cpm = np.cos(p[m] * D2R)
sad = np.sin(a[d] * D2R)
cad = np.cos(a[d] * D2R)
sab = np.sin(a[b] * D2R)
cab = np.cos(a[b] * D2R)
sam = np.sin(a[m] * D2R)
cam = np.cos(a[m] * D2R)
for i in range(0, 360):
fir = i * D2R
s2alphan = (2. + 2. * iso) / \
float(3. + (1. - 2. * f) * np.cos(2. * fir))
if s2alphan > 1.:
big_iso += 1
else:
alphan = np.arcsin(np.sqrt(s2alphan))
sfi = np.sin(fir)
cfi = np.cos(fir)
san = np.sin(alphan)
can = np.cos(alphan)
xz = can * spd + san * sfi * spb + san * cfi * spm
xn = can * cpd * cad + san * sfi * cpb * cab + \
san * cfi * cpm * cam
xe = can * cpd * sad + san * sfi * cpb * sab + \
san * cfi * cpm * sam
if np.fabs(xn) < EPSILON and np.fabs(xe) < EPSILON:
takeoff = 0.
az = 0.
else:
az = np.arctan2(xe, xn)
if az < 0.:
az += np.pi * 2.
takeoff = np.arccos(xz / float(np.sqrt(xz * xz + xn * xn +
xe * xe)))
if takeoff > np.pi / 2.:
takeoff = np.pi - takeoff
az += np.pi
if az > np.pi * 2.:
az -= np.pi * 2.
r = np.sqrt(2) * np.sin(takeoff / 2.)
si = np.sin(az)
co = np.cos(az)
if i == 0:
azi[i][0] = az
x[i] = x0 + radius_size * r * si
y[i] = y0 + radius_size * r * co
azp = az
else:
if np.fabs(np.fabs(az - azp) - np.pi) < D2R * 10.:
azi[n][1] = azp
n += 1
azi[n][0] = az
if np.fabs(np.fabs(az - azp) - np.pi * 2.) < D2R * 2.:
if azp < az:
azi[n][0] += np.pi * 2.
else:
azi[n][0] -= np.pi * 2.
if n == 0:
x[j] = x0 + radius_size * r * si
y[j] = y0 + radius_size * r * co
j += 1
elif n == 1:
x2[j2] = x0 + radius_size * r * si
y2[j2] = y0 + radius_size * r * co
j2 += 1
elif n == 2:
x3[j3] = x0 + radius_size * r * si
y3[j3] = y0 + radius_size * r * co
j3 += 1
azp = az
azi[n][1] = az
if v[1] < 0.:
rgb1 = 'b'
rgb2 = 'w'
else:
rgb1 = 'w'
rgb2 = 'b'
cir = patches.Ellipse(xy, width=width[0], height=width[1])
collect.append(cir)
colors.append(rgb2)
if n == 0:
collect.append(xy2patch(x[0:360], y[0:360], res, xy))
colors.append(rgb1)
return colors, collect
elif n == 1:
for i in range(0, j):
xp1[i] = x[i]
yp1[i] = y[i]
if azi[0][0] - azi[0][1] > np.pi:
azi[0][0] -= np.pi * 2.
elif azi[0][1] - azi[0][0] > np.pi:
azi[0][0] += np.pi * 2.
if azi[0][0] < azi[0][1]:
az = azi[0][1] - D2R
while az > azi[0][0]:
si = np.sin(az)
co = np.cos(az)
xp1[i] = x0 + radius_size * si
yp1[i] = y0 + radius_size * co
i += 1
az -= D2R
else:
az = azi[0][1] + D2R
while az < azi[0][0]:
si = np.sin(az)
co = np.cos(az)
xp1[i] = x0 + radius_size * si
yp1[i] = y0 + radius_size * co
i += 1
az += D2R
collect.append(xy2patch(xp1[0:i], yp1[0:i], res, xy))
colors.append(rgb1)
for i in range(0, j2):
xp2[i] = x2[i]
yp2[i] = y2[i]
if azi[1][0] - azi[1][1] > np.pi:
azi[1][0] -= np.pi * 2.
elif azi[1][1] - azi[1][0] > np.pi:
azi[1][0] += np.pi * 2.
if azi[1][0] < azi[1][1]:
az = azi[1][1] - D2R
while az > azi[1][0]:
si = np.sin(az)
co = np.cos(az)
xp2[i] = x0 + radius_size * si
i += 1
yp2[i] = y0 + radius_size * co
az -= D2R
else:
az = azi[1][1] + D2R
while az < azi[1][0]:
si = np.sin(az)
co = np.cos(az)
xp2[i] = x0 + radius_size * si
i += 1
yp2[i] = y0 + radius_size * co
az += D2R
collect.append(xy2patch(xp2[0:i], yp2[0:i], res, xy))
colors.append(rgb1)
return colors, collect
elif n == 2:
for i in range(0, j3):
xp1[i] = x3[i]
yp1[i] = y3[i]
for ii in range(0, j):
xp1[i] = x[ii]
i += 1
yp1[i] = y[ii]
if big_iso:
ii = j2 - 1
while ii >= 0:
xp1[i] = x2[ii]
i += 1
yp1[i] = y2[ii]
ii -= 1
collect.append(xy2patch(xp1[0:i], yp1[0:i], res, xy))
colors.append(rgb1)
return colors, collect
if azi[2][0] - azi[0][1] > np.pi:
azi[2][0] -= np.pi * 2.
elif azi[0][1] - azi[2][0] > np.pi:
azi[2][0] += np.pi * 2.
if azi[2][0] < azi[0][1]:
az = azi[0][1] - D2R
while az > azi[2][0]:
si = np.sin(az)
co = np.cos(az)
xp1[i] = x0 + radius_size * si
i += 1
yp1[i] = y0 + radius_size * co
az -= D2R
else:
az = azi[0][1] + D2R
while az < azi[2][0]:
si = np.sin(az)
co = np.cos(az)
xp1[i] = x0 + radius_size * si
i += 1
yp1[i] = y0 + radius_size * co
az += D2R
collect.append(xy2patch(xp1[0:i], yp1[0:i], res, xy))
colors.append(rgb1)
for i in range(0, j2):
xp2[i] = x2[i]
yp2[i] = y2[i]
if azi[1][0] - azi[1][1] > np.pi:
azi[1][0] -= np.pi * 2.
elif azi[1][1] - azi[1][0] > np.pi:
azi[1][0] += np.pi * 2.
if azi[1][0] < azi[1][1]:
az = azi[1][1] - D2R
while az > azi[1][0]:
si = np.sin(az)
co = np.cos(az)
xp2[i] = x0 + radius_size * si
i += 1
yp2[i] = y0 + radius_size * co
az -= D2R
else:
az = azi[1][1] + D2R
while az < azi[1][0]:
si = np.sin(az)
co = np.cos(az)
xp2[i] = x0 + radius_size * si
i += 1
yp2[i] = y0 + radius_size * co
az += D2R
collect.append(xy2patch(xp2[0:i], yp2[0:i], res, xy))
colors.append(rgb1)
return colors, collect
[docs]def plotDC(np1, size=200, xy=(0, 0), width=200):
"""
Uses one nodal plane of a double couple to draw a beach ball plot.
:param ax: axis object of a matplotlib figure
:param np1: :class:`~NodalPlane`
Adapted from MATLAB script
`bb.m <http://www.ceri.memphis.edu/people/olboyd/Software/Software.html>`_
written by Andy Michael and Oliver Boyd.
"""
# check if one or two widths are specified (Circle or Ellipse)
try:
assert(len(width) == 2)
except TypeError:
width = (width, width)
S1 = np1.strike
D1 = np1.dip
R1 = np1.rake
M = 0
if R1 > 180:
R1 -= 180
M = 1
if R1 < 0:
R1 += 180
M = 1
# Get azimuth and dip of second plane
(S2, D2, _R2) = AuxPlane(S1, D1, R1)
D = size / 2
if D1 >= 90:
D1 = 89.9999
if D2 >= 90:
D2 = 89.9999
# arange checked for numerical stablility, np.pi is not multiple of 0.1
phi = np.arange(0, np.pi, .01)
l1 = np.sqrt(
np.power(90 - D1, 2) / (
np.power(np.sin(phi), 2) +
np.power(np.cos(phi), 2) * np.power(90 - D1, 2) / np.power(90, 2)))
l2 = np.sqrt(
np.power(90 - D2, 2) / (
np.power(np.sin(phi), 2) + np.power(np.cos(phi), 2) *
np.power(90 - D2, 2) / np.power(90, 2)))
inc = 1
(X1, Y1) = Pol2Cart(phi + S1 * D2R, l1)
if M == 1:
lo = S1 - 180
hi = S2
if lo > hi:
inc = -1
th1 = np.arange(S1 - 180, S2, inc)
(Xs1, Ys1) = Pol2Cart(th1 * D2R, 90 * np.ones((1, len(th1))))
(X2, Y2) = Pol2Cart(phi + S2 * D2R, l2)
th2 = np.arange(S2 + 180, S1, -inc)
else:
hi = S1 - 180
lo = S2 - 180
if lo > hi:
inc = -1
th1 = np.arange(hi, lo, -inc)
(Xs1, Ys1) = Pol2Cart(th1 * D2R, 90 * np.ones((1, len(th1))))
(X2, Y2) = Pol2Cart(phi + S2 * D2R, l2)
X2 = X2[::-1]
Y2 = Y2[::-1]
th2 = np.arange(S2, S1, inc)
(Xs2, Ys2) = Pol2Cart(th2 * D2R, 90 * np.ones((1, len(th2))))
X = np.concatenate((X1, Xs1[0], X2, Xs2[0]))
Y = np.concatenate((Y1, Ys1[0], Y2, Ys2[0]))
X = X * D / 90
Y = Y * D / 90
# calculate resolution
res = [value / float(size) for value in width]
# construct the patches
collect = [patches.Ellipse(xy, width=width[0], height=width[1])]
collect.append(xy2patch(Y, X, res, xy))
return ['b', 'w'], collect
[docs]def xy2patch(x, y, res, xy):
# check if one or two resolutions are specified (Circle or Ellipse)
try:
assert(len(res) == 2)
except TypeError:
res = (res, res)
# transform into the Path coordinate system
x = x * res[0] + xy[0]
y = y * res[1] + xy[1]
verts = list(zip(x.tolist(), y.tolist()))
codes = [mplpath.Path.MOVETO]
codes.extend([mplpath.Path.LINETO] * (len(x) - 2))
codes.append(mplpath.Path.CLOSEPOLY)
path = mplpath.Path(verts, codes)
return patches.PathPatch(path)
[docs]def Pol2Cart(th, r):
"""
"""
x = r * np.cos(th)
y = r * np.sin(th)
return (x, y)
[docs]def StrikeDip(n, e, u):
"""
Finds strike and dip of plane given normal vector having components n, e,
and u.
Adapted from MATLAB script
`bb.m <http://www.ceri.memphis.edu/people/olboyd/Software/Software.html>`_
written by Andy Michael and Oliver Boyd.
"""
r2d = 180 / np.pi
if u < 0:
n = -n
e = -e
u = -u
strike = np.arctan2(e, n) * r2d
strike = strike - 90
while strike >= 360:
strike = strike - 360
while strike < 0:
strike = strike + 360
x = np.sqrt(np.power(n, 2) + np.power(e, 2))
dip = np.arctan2(x, u) * r2d
return (strike, dip)
[docs]def AuxPlane(s1, d1, r1):
"""
Get Strike and dip of second plane.
Adapted from MATLAB script
`bb.m <http://www.ceri.memphis.edu/people/olboyd/Software/Software.html>`_
written by Andy Michael and Oliver Boyd.
"""
r2d = 180 / np.pi
z = (s1 + 90) / r2d
z2 = d1 / r2d
z3 = r1 / r2d
# slick vector in plane 1
sl1 = -np.cos(z3) * np.cos(z) - np.sin(z3) * np.sin(z) * np.cos(z2)
sl2 = np.cos(z3) * np.sin(z) - np.sin(z3) * np.cos(z) * np.cos(z2)
sl3 = np.sin(z3) * np.sin(z2)
(strike, dip) = StrikeDip(sl2, sl1, sl3)
n1 = np.sin(z) * np.sin(z2) # normal vector to plane 1
n2 = np.cos(z) * np.sin(z2)
h1 = -sl2 # strike vector of plane 2
h2 = sl1
# note h3=0 always so we leave it out
# n3 = np.cos(z2)
z = h1 * n1 + h2 * n2
z = z / np.sqrt(h1 * h1 + h2 * h2)
z = np.arccos(z)
rake = 0
if sl3 > 0:
rake = z * r2d
if sl3 <= 0:
rake = -z * r2d
return (strike, dip, rake)
[docs]def MT2Plane(mt):
"""
Calculates a nodal plane of a given moment tensor.
:param mt: :class:`~MomentTensor`
:return: :class:`~NodalPlane`
Adapted from MATLAB script
`bb.m <http://www.ceri.memphis.edu/people/olboyd/Software/Software.html>`_
written by Andy Michael and Oliver Boyd.
"""
(d, v) = np.linalg.eig(mt.mt)
D = np.array([d[1], d[0], d[2]])
V = np.array([[v[1, 1], -v[1, 0], -v[1, 2]],
[v[2, 1], -v[2, 0], -v[2, 2]],
[-v[0, 1], v[0, 0], v[0, 2]]])
IMAX = D.argmax()
IMIN = D.argmin()
AE = (V[:, IMAX] + V[:, IMIN]) / np.sqrt(2.0)
AN = (V[:, IMAX] - V[:, IMIN]) / np.sqrt(2.0)
AER = np.sqrt(np.power(AE[0], 2) + np.power(AE[1], 2) + np.power(AE[2], 2))
ANR = np.sqrt(np.power(AN[0], 2) + np.power(AN[1], 2) + np.power(AN[2], 2))
AE = AE / AER
if not ANR:
AN = np.array([np.nan, np.nan, np.nan])
else:
AN = AN / ANR
if AN[2] <= 0.:
AN1 = AN
AE1 = AE
else:
AN1 = -AN
AE1 = -AE
(ft, fd, fl) = TDL(AN1, AE1)
return NodalPlane(360 - ft, fd, 180 - fl)
[docs]def TDL(AN, BN):
"""
Helper function for MT2Plane.
Adapted from MATLAB script
`bb.m <http://www.ceri.memphis.edu/people/olboyd/Software/Software.html>`_
written by Andy Michael and Oliver Boyd.
"""
XN = AN[0]
YN = AN[1]
ZN = AN[2]
XE = BN[0]
YE = BN[1]
ZE = BN[2]
AAA = 1.0 / (1000000)
CON = 57.2957795
if np.fabs(ZN) < AAA:
FD = 90.
AXN = np.fabs(XN)
if AXN > 1.0:
AXN = 1.0
FT = np.arcsin(AXN) * CON
ST = -XN
CT = YN
if ST >= 0. and CT < 0:
FT = 180. - FT
if ST < 0. and CT <= 0:
FT = 180. + FT
if ST < 0. and CT > 0:
FT = 360. - FT
FL = np.arcsin(abs(ZE)) * CON
SL = -ZE
if np.fabs(XN) < AAA:
CL = XE / YN
else:
CL = -YE / XN
if SL >= 0. and CL < 0:
FL = 180. - FL
if SL < 0. and CL <= 0:
FL = FL - 180.
if SL < 0. and CL > 0:
FL = -FL
else:
if - ZN > 1.0:
ZN = -1.0
FDH = np.arccos(-ZN)
FD = FDH * CON
SD = np.sin(FDH)
if SD == 0:
return
ST = -XN / SD
CT = YN / SD
SX = np.fabs(ST)
if SX > 1.0:
SX = 1.0
FT = np.arcsin(SX) * CON
if ST >= 0. and CT < 0:
FT = 180. - FT
if ST < 0. and CT <= 0:
FT = 180. + FT
if ST < 0. and CT > 0:
FT = 360. - FT
SL = -ZE / SD
SX = np.fabs(SL)
if SX > 1.0:
SX = 1.0
FL = np.arcsin(SX) * CON
if ST == 0:
CL = XE / CT
else:
XXX = YN * ZN * ZE / SD / SD + YE
CL = -SD * XXX / XN
if CT == 0:
CL = YE / ST
if SL >= 0. and CL < 0:
FL = 180. - FL
if SL < 0. and CL <= 0:
FL = FL - 180.
if SL < 0. and CL > 0:
FL = -FL
return (FT, FD, FL)
[docs]def MT2Axes(mt):
"""
Calculates the principal axes of a given moment tensor.
:param mt: :class:`~MomentTensor`
:return: tuple of :class:`~PrincipalAxis` T, N and P
Adapted from ps_tensor / utilmeca.c /
`Generic Mapping Tools (GMT) <http://gmt.soest.hawaii.edu>`_.
"""
(D, V) = np.linalg.eigh(mt.mt)
pl = np.arcsin(-V[0])
az = np.arctan2(V[2], -V[1])
for i in range(0, 3):
if pl[i] <= 0:
pl[i] = -pl[i]
az[i] += np.pi
if az[i] < 0:
az[i] += 2 * np.pi
if az[i] > 2 * np.pi:
az[i] -= 2 * np.pi
pl *= R2D
az *= R2D
T = PrincipalAxis(D[2], az[2], pl[2])
N = PrincipalAxis(D[1], az[1], pl[1])
P = PrincipalAxis(D[0], az[0], pl[0])
return (T, N, P)
[docs]class PrincipalAxis(object):
"""
A principal axis.
Strike and dip values are in degrees.
>>> a = PrincipalAxis(1.3, 20, 50)
>>> a.dip
50
>>> a.strike
20
>>> a.val
1.3
"""
def __init__(self, val=0, strike=0, dip=0):
self.val = val
self.strike = strike
self.dip = dip
[docs]class NodalPlane(object):
"""
A nodal plane.
All values are in degrees.
>>> a = NodalPlane(13, 20, 50)
>>> a.strike
13
>>> a.dip
20
>>> a.rake
50
"""
def __init__(self, strike=0, dip=0, rake=0):
self.strike = strike
self.dip = dip
self.rake = rake
[docs]class MomentTensor(object):
"""
A moment tensor.
>>> a = MomentTensor(1, 1, 0, 0, 0, -1, 26)
>>> b = MomentTensor(np.array([1, 1, 0, 0, 0, -1]), 26)
>>> c = MomentTensor(np.array([[1, 0, 0], [0, 1, -1], [0, -1, 0]]), 26)
>>> a.mt
array([[ 1, 0, 0],
[ 0, 1, -1],
[ 0, -1, 0]])
>>> b.yz
-1
>>> a.expo
26
"""
def __init__(self, *args):
if len(args) == 2:
A = args[0]
self.expo = args[1]
if len(A) == 6:
# six independent components
self.mt = np.array([[A[0], A[3], A[4]],
[A[3], A[1], A[5]],
[A[4], A[5], A[2]]])
elif isinstance(A, np.ndarray) and A.shape == (3, 3):
# full matrix
self.mt = A
else:
raise TypeError("Wrong size of input parameter.")
elif len(args) == 7:
# six independent components
self.mt = np.array([[args[0], args[3], args[4]],
[args[3], args[1], args[5]],
[args[4], args[5], args[2]]])
self.expo = args[6]
else:
raise TypeError("Wrong size of input parameter.")
@property
def xx(self):
return self.mt[0][0]
@property
def xy(self):
return self.mt[0][1]
@property
def xz(self):
return self.mt[0][2]
@property
def yz(self):
return self.mt[1][2]
@property
def yy(self):
return self.mt[1][1]
@property
def zz(self):
return self.mt[2][2]
if __name__ == '__main__':
import doctest
doctest.testmod()