Source code for openquake.calculators.event_based

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2015-2018 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
import math
import os.path
import itertools
import logging
import collections
import numpy

from openquake.baselib import hdf5
from openquake.baselib.python3compat import zip
from openquake.baselib.general import (
    AccumDict, block_splitter, split_in_slices)
from openquake.hazardlib.calc.stochastic import sample_ruptures
from openquake.hazardlib.probability_map import ProbabilityMap
from openquake.hazardlib.stats import compute_pmap_stats
from openquake.risklib.riskinput import str2rsi, rsi2str, indices_dt
from openquake.baselib import parallel
from openquake.commonlib import calc, util, readinput
from openquake.calculators import base
from openquake.calculators.getters import GmfGetter, RuptureGetter
from openquake.calculators.classical import (
    ClassicalCalculator, saving_sources_by_task)

U8 = numpy.uint8
U16 = numpy.uint16
U32 = numpy.uint32
U64 = numpy.uint64
F32 = numpy.float32
F64 = numpy.float64


[docs]def compute_ruptures(sources, src_filter, gsims, param, monitor): """ :param sources: a sequence of sources of the same group :param src_filter: a source site filter :param gsims: a list of GSIMs for the current tectonic region model :param param: a dictionary of additional parameters :param monitor: monitor instance :returns: a dictionary src_group_id -> [Rupture instances] """ # NB: by construction each block is a non-empty list with # sources of the same src_group_id grp_id = sources[0].src_group_id dic = sample_ruptures(sources, src_filter, gsims, param, monitor) res = AccumDict({grp_id: dic['eb_ruptures']}) res.num_events = dic['num_events'] res.calc_times = dic['calc_times'] res.eff_ruptures = {grp_id: dic['num_ruptures']} return res
[docs]def get_events(ebruptures): """ Extract an array of dtype stored_event_dt from a list of EBRuptures """ events = [] year = 0 # to be set later for ebr in ebruptures: for event in ebr.events: rec = (event['eid'], ebr.serial, ebr.grp_id, year, event['ses'], event['sample']) events.append(rec) return numpy.array(events, readinput.stored_event_dt)
[docs]@base.calculators.add('event_based_rupture') class EventBasedRuptureCalculator(base.HazardCalculator): """ Event based PSHA calculator generating the ruptures only """ core_task = compute_ruptures is_stochastic = True
[docs] def init(self): """ Set the random seed passed to the SourceManager and the minimum_intensity dictionary. """ oq = self.oqparam self.min_iml = self.get_min_iml(oq) self.rupser = calc.RuptureSerializer(self.datastore)
[docs] def zerodict(self): """ Initial accumulator, a dictionary (grp_id, gsim) -> curves """ zd = AccumDict() zd.eff_ruptures = AccumDict() self.grp_trt = self.csm.info.grp_by("trt") return zd
[docs] def agg_dicts(self, acc, ruptures_by_grp_id): """ Accumulate dictionaries of ruptures and populate the `events` dataset in the datastore. :param acc: accumulator dictionary :param ruptures_by_grp_id: a nested dictionary grp_id -> ruptures """ if hasattr(ruptures_by_grp_id, 'calc_times'): for srcid, nsites, eids, dt in ruptures_by_grp_id.calc_times: info = self.csm.infos[srcid] info.num_sites += nsites info.calc_time += dt info.num_split += 1 info.events += len(eids) if hasattr(ruptures_by_grp_id, 'eff_ruptures'): acc.eff_ruptures += ruptures_by_grp_id.eff_ruptures acc += ruptures_by_grp_id self.save_ruptures(ruptures_by_grp_id) return acc
[docs] def save_ruptures(self, ruptures_by_grp_id): """ Extend the 'events' dataset with the events from the given ruptures; also, save the ruptures if the flag `save_ruptures` is on. :param ruptures_by_grp_id: a dictionary grp_id -> list of EBRuptures """ with self.monitor('saving ruptures', autoflush=True): for grp_id, ebrs in ruptures_by_grp_id.items(): if len(ebrs): events = get_events(ebrs) dset = self.datastore.extend('events', events) if self.oqparam.save_ruptures: self.rupser.save(ebrs, eidx=len(dset)-len(events))
[docs] def gen_args(self, csm, monitor): """ Used in the case of large source model logic trees. :param monitor: a :class:`openquake.baselib.performance.Monitor` :param csm: a reduced CompositeSourceModel :yields: (sources, sites, gsims, monitor) tuples """ oq = self.oqparam def weight(src): return src.num_ruptures * src.RUPTURE_WEIGHT csm, src_filter = self.filter_csm() maxweight = csm.get_maxweight(weight, oq.concurrent_tasks or 1) logging.info('Using maxweight=%d', maxweight) param = dict( truncation_level=oq.truncation_level, imtls=oq.imtls, filter_distance=oq.filter_distance, seed=oq.ses_seed, maximum_distance=oq.maximum_distance, ses_per_logic_tree_path=oq.ses_per_logic_tree_path) num_tasks = 0 num_sources = 0 for sm in csm.source_models: for sg in sm.src_groups: gsims = csm.info.gsim_lt.get_gsims(sg.trt) csm.add_infos(sg.sources) if sg.src_interdep == 'mutex': # do not split sg.samples = sm.samples yield sg, src_filter, gsims, param, monitor num_tasks += 1 num_sources += len(sg.sources) continue for block in block_splitter(sg.sources, maxweight, weight): block.samples = sm.samples yield block, src_filter, gsims, param, monitor num_tasks += 1 num_sources += len(block) logging.info('Sent %d sources in %d tasks', num_sources, num_tasks)
[docs] def execute(self): with self.monitor('managing sources', autoflush=True): allargs = self.gen_args(self.csm, self.monitor('classical')) iterargs = saving_sources_by_task(allargs, self.datastore) if isinstance(allargs, list): # there is a trick here: if the arguments are known # (a list, not an iterator), keep them as a list # then the Starmap will understand the case of a single # argument tuple and it will run in core the task iterargs = list(iterargs) acc = parallel.Starmap(self.core_task.__func__, iterargs).reduce( self.agg_dicts, self.zerodict()) with self.monitor('store source_info', autoflush=True): self.store_source_info(self.csm.infos, acc) return acc
[docs] def post_execute(self, result): """ Save the SES collection """ self.rupser.close() num_events = sum(set_counts(self.datastore, 'events').values()) if num_events == 0: raise RuntimeError( 'No seismic events! Perhaps the investigation time is too ' 'small or the maximum_distance is too small') num_ruptures = sum(len(ruptures) for ruptures in result.values()) logging.info('Setting %d event years on %d ruptures', num_events, num_ruptures) with self.monitor('setting event years', measuremem=True, autoflush=True): numpy.random.seed(self.oqparam.ses_seed) set_random_years(self.datastore, 'events', int(self.oqparam.investigation_time))
[docs]def set_counts(dstore, dsetname): """ :param dstore: a DataStore instance :param dsetname: name of dataset with a field `grp_id` :returns: a dictionary grp_id > counts """ groups = dstore[dsetname]['grp_id'] unique, counts = numpy.unique(groups, return_counts=True) dic = dict(zip(unique, counts)) dstore.set_attrs(dsetname, by_grp=sorted(dic.items())) return dic
[docs]def set_random_years(dstore, name, investigation_time): """ Set on the `events` dataset year labels sensitive to the SES ordinal and the investigation time. :param dstore: a DataStore instance :param name: name of the dataset ('events') :param investigation_time: investigation time """ events = dstore[name].value years = numpy.random.choice(investigation_time, len(events)) + 1 year_of = dict(zip(numpy.sort(events['eid']), years)) # eid -> year for event in events: event['year'] = year_of[event['eid']] dstore[name] = events
# ######################## GMF calculator ############################ #
[docs]def compute_gmfs_and_curves(getters, oq, monitor): """ :param getters: a list of GmfGetter instances :param oq: an OqParam instance :param monitor: a Monitor instance :returns: a list of dictionaries with keys gmfcoll and hcurves """ results = [] for getter in getters: with monitor('GmfGetter.init', measuremem=True): getter.init() hcurves = {} # key -> poes if oq.hazard_curves_from_gmfs: hc_mon = monitor('building hazard curves', measuremem=False) duration = oq.investigation_time * oq.ses_per_logic_tree_path with monitor('building hazard', measuremem=True): gmfdata = numpy.fromiter(getter.gen_gmv(), getter.gmf_data_dt) hazard = getter.get_hazard(data=gmfdata) for sid, hazardr in zip(getter.sids, hazard): for rlzi, array in hazardr.items(): if len(array) == 0: # no data continue with hc_mon: gmvs = array['gmv'] for imti, imt in enumerate(getter.imtls): poes = calc._gmvs_to_haz_curve( gmvs[:, imti], oq.imtls[imt], oq.investigation_time, duration) hcurves[rsi2str(rlzi, sid, imt)] = poes else: # fast lane with monitor('building hazard', measuremem=True): gmfdata = numpy.fromiter(getter.gen_gmv(), getter.gmf_data_dt) indices = [] if oq.ground_motion_fields: gmfdata.sort(order=('sid', 'rlzi', 'eid')) start = stop = 0 for sid, rows in itertools.groupby(gmfdata['sid']): for row in rows: stop += 1 indices.append((sid, start, stop)) start = stop else: gmfdata = None res = dict(gmfdata=gmfdata, hcurves=hcurves, gmdata=getter.gmdata, indices=numpy.array(indices, (U32, 3))) if len(getter.gmdata): results.append(res) return results
[docs]def update_nbytes(dstore, key, array): nbytes = dstore.get_attr(key, 'nbytes', 0) dstore.set_attrs(key, nbytes=nbytes + array.nbytes)
[docs]@base.calculators.add('event_based') class EventBasedCalculator(base.HazardCalculator): """ Event based PSHA calculator generating the ground motion fields and the hazard curves from the ruptures, depending on the configuration parameters. """ pre_calculator = 'event_based_rupture' core_task = compute_gmfs_and_curves is_stochastic = True
[docs] def combine_pmaps_and_save_gmfs(self, acc, results): """ Combine the hazard curves (if any) and save the gmfs (if any) sequentially; notice that the gmfs may come from different tasks in any order. :param acc: an accumulator for the hazard curves :param results: dictionaries rlzi, imt -> [gmf_array, curves_by_imt] :returns: a new accumulator """ sav_mon = self.monitor('saving gmfs') agg_mon = self.monitor('aggregating hcurves') hdf5path = self.datastore.hdf5path for res in results: self.gmdata += res['gmdata'] data = res['gmfdata'] if data is not None: with sav_mon: hdf5.extend3(hdf5path, 'gmf_data/data', data) # it is important to save the number of bytes while the # computation is going, to see the progress update_nbytes(self.datastore, 'gmf_data/data', data) for sid, start, stop in res['indices']: self.indices[sid].append( (start + self.offset, stop + self.offset)) self.offset += len(data) slicedic = self.oqparam.imtls.slicedic with agg_mon: for key, poes in res['hcurves'].items(): r, sid, imt = str2rsi(key) array = acc[r].setdefault(sid, 0).array[slicedic[imt], 0] array[:] = 1. - (1. - array) * (1. - poes) sav_mon.flush() agg_mon.flush() self.datastore.flush() if 'ruptures' in res: vars(EventBasedRuptureCalculator)['save_ruptures']( self, res['ruptures']) return acc
[docs] def gen_args(self): """ :yields: the arguments for compute_gmfs_and_curves """ oq = self.oqparam sitecol = self.sitecol.complete monitor = self.monitor(self.core_task.__name__) imts = list(oq.imtls) min_iml = self.get_min_iml(oq) correl_model = oq.get_correl_model() try: csm_info = self.csm.info except AttributeError: # no csm csm_info = self.datastore['csm_info'] samples_by_grp = csm_info.get_samples_by_grp() rlzs_by_gsim = {grp_id: self.rlzs_assoc.get_rlzs_by_gsim(grp_id) for grp_id in samples_by_grp} if self.precalc: num_ruptures = sum(len(rs) for rs in self.precalc.result.values()) block_size = math.ceil(num_ruptures / (oq.concurrent_tasks or 1)) for grp_id, ruptures in self.precalc.result.items(): if not ruptures: continue for block in block_splitter(ruptures, block_size): getter = GmfGetter( rlzs_by_gsim[grp_id], block, sitecol, imts, min_iml, oq.maximum_distance, oq.truncation_level, correl_model, oq.filter_distance, samples_by_grp[grp_id]) yield [getter], oq, monitor return U = len(self.datastore['ruptures']) logging.info('Found %d ruptures', U) parent = self.can_read_parent() or self.datastore for slc in split_in_slices(U, oq.concurrent_tasks or 1): getters = [] for grp_id in rlzs_by_gsim: ruptures = RuptureGetter(parent, slc, grp_id) if parent is self.datastore: # not accessible parent ruptures = list(ruptures) if not ruptures: continue getters.append(GmfGetter( rlzs_by_gsim[grp_id], ruptures, sitecol, imts, min_iml, oq.maximum_distance, oq.truncation_level, correl_model, oq.filter_distance, samples_by_grp[grp_id])) yield getters, oq, monitor
[docs] def execute(self): """ Run in parallel `core_task(sources, sitecol, monitor)`, by parallelizing on the ruptures according to their weight and tectonic region type. """ oq = self.oqparam if not oq.hazard_curves_from_gmfs and not oq.ground_motion_fields: return if self.oqparam.ground_motion_fields: calc.check_overflow(self) self.csm_info = self.datastore['csm_info'] self.sm_id = {tuple(sm.path): sm.ordinal for sm in self.csm_info.source_models} L = len(oq.imtls.array) R = self.datastore['csm_info'].get_num_rlzs() self.gmdata = {} self.offset = 0 self.indices = collections.defaultdict(list) # sid -> indices ires = parallel.Starmap( self.core_task.__func__, self.gen_args()).submit_all() if self.precalc and self.precalc.result: # remove the ruptures in memory to save memory self.precalc.result.clear() acc = ires.reduce(self.combine_pmaps_and_save_gmfs, { r: ProbabilityMap(L) for r in range(R)}) base.save_gmdata(self, R) if self.indices: logging.info('Saving gmf_data/indices') with self.monitor('saving gmf_data/indices', measuremem=True, autoflush=True): self.datastore.save_vlen( 'gmf_data/indices', [numpy.array(self.indices[sid], indices_dt) for sid in self.sitecol.complete.sids]) return acc
[docs] def save_gmf_bytes(self): """Save the attribute nbytes in the gmf_data datasets""" ds = self.datastore for sm_id in ds['gmf_data']: ds.set_nbytes('gmf_data/' + sm_id) ds.set_nbytes('gmf_data')
[docs] def post_execute(self, result): """ :param result: a dictionary (src_group_id, gsim) -> haz_curves or an empty dictionary if hazard_curves_from_gmfs is false """ oq = self.oqparam if not oq.hazard_curves_from_gmfs and not oq.ground_motion_fields: return elif oq.hazard_curves_from_gmfs: rlzs = self.rlzs_assoc.realizations # save individual curves for i in sorted(result): key = 'hcurves/rlz-%03d' % i if result[i]: self.datastore[key] = result[i] else: self.datastore[key] = ProbabilityMap(oq.imtls.array.size) logging.info('Zero curves for %s', key) # compute and save statistics; this is done in process and can # be very slow if there are thousands of realizations weights = [rlz.weight for rlz in rlzs] hstats = self.oqparam.hazard_stats() if len(hstats) and len(rlzs) > 1: logging.info('Computing statistical hazard curves') for kind, stat in hstats: pmap = compute_pmap_stats(result.values(), [stat], weights) self.datastore['hcurves/' + kind] = pmap if self.datastore.parent: self.datastore.parent.open() if 'gmf_data' in self.datastore: self.save_gmf_bytes() if oq.compare_with_classical: # compute classical curves export_dir = os.path.join(oq.export_dir, 'cl') if not os.path.exists(export_dir): os.makedirs(export_dir) oq.export_dir = export_dir # one could also set oq.number_of_logic_tree_samples = 0 self.cl = ClassicalCalculator(oq) # TODO: perhaps it is possible to avoid reprocessing the source # model, however usually this is quite fast and do not dominate # the computation self.cl.run(close=False) cl_mean_curves = get_mean_curves(self.cl.datastore) eb_mean_curves = get_mean_curves(self.datastore) for imt in eb_mean_curves.dtype.names: rdiff, index = util.max_rel_diff_index( cl_mean_curves[imt], eb_mean_curves[imt]) logging.warn('Relative difference with the classical ' 'mean curves for IMT=%s: %d%% at site index %d', imt, rdiff * 100, index)
[docs]def get_mean_curves(dstore): """ Extract the mean hazard curves from the datastore, as a composite array of length nsites. """ imtls = dstore['oqparam'].imtls nsites = len(dstore['sitecol']) hcurves = dstore['hcurves'] if 'mean' in hcurves: mean = dstore['hcurves/mean'] elif len(hcurves) == 1: # there is a single realization mean = dstore['hcurves/rlz-0000'] return mean.convert(imtls, nsites)