# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2013-2017 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
"""
Validation library for the engine, the desktop tools, and anything else
"""
import re
import ast
import logging
import collections
from decimal import Decimal
import numpy
from openquake.baselib.python3compat import with_metaclass
from openquake.baselib.general import distinct
from openquake.baselib import hdf5
from openquake.hazardlib import imt, scalerel, gsim
from openquake.hazardlib.gsim.gsim_table import GMPETable
from openquake.hazardlib.calc import disagg
from openquake.hazardlib.calc.filters import IntegrationDistance
SCALEREL = scalerel.get_available_magnitude_scalerel()
GSIM = gsim.get_available_gsims()
disagg_outs = ['_'.join(tup) for tup in sorted(disagg.pmf_map)]
def disagg_outputs(value):
"""
Validate disaggregation outputs. For instance
>>> disagg_outputs('TRT Mag_Dist')
['TRT', 'Mag_Dist']
>>> disagg_outputs('TRT, Mag_Dist')
['TRT', 'Mag_Dist']
"""
values = value.replace(',', ' ').split()
for val in values:
if val not in disagg_outs:
raise ValueError('Invalid disagg output: %s' % val)
return values
class FromFile(object): # fake GSIM
def __str__(self):
return 'FromFile'
# more tests are in tests/valid_test.py
def gsim(value, **kwargs):
"""
Make sure the given value is the name of an available GSIM class.
>>> gsim('BooreAtkinson2011')
'BooreAtkinson2011()'
"""
minimum_distance = float(kwargs.pop('minimum_distance', 0))
if value.endswith('()'):
value = value[:-2] # strip parenthesis
if value == 'FromFile':
return FromFile()
elif value.startswith('GMPETable'):
gsim_class = GMPETable
else:
try:
gsim_class = GSIM[value]
except KeyError:
raise ValueError('Unknown GSIM: %s' % value)
try:
gs = gsim_class(**kwargs)
except TypeError:
raise ValueError('Could not instantiate %s%s' % (value, kwargs))
gs.minimum_distance = minimum_distance
return gs
def logic_tree_path(value):
"""
>>> logic_tree_path('SM2_a3b1')
['SM2', 'a3b1']
"""
return value.split('_')
def compose(*validators):
"""
Implement composition of validators. For instance
>>> utf8_not_empty = compose(utf8, not_empty)
"""
def composed_validator(value):
out = value
for validator in reversed(validators):
out = validator(out)
return out
composed_validator.__name__ = 'compose(%s)' % ','.join(
val.__name__ for val in validators)
return composed_validator
class NoneOr(object):
"""
Accept the empty string (casted to None) or something else validated
by the underlying `cast` validator.
"""
def __init__(self, cast):
self.cast = cast
self.__name__ = cast.__name__
def __call__(self, value):
if value:
return self.cast(value)
class Choice(object):
"""
Check if the choice is valid (case sensitive).
"""
@property
def __name__(self):
return 'Choice%s' % str(self.choices)
def __init__(self, *choices):
self.choices = choices
def __call__(self, value):
if value not in self.choices:
raise ValueError("Got '%s', expected %s" % (
value, '|'.join(self.choices)))
return value
class ChoiceCI(object):
"""
Check if the choice is valid (case insensitive version).
"""
def __init__(self, *choices):
self.choices = choices
self.__name__ = 'ChoiceCI%s' % str(choices)
def __call__(self, value):
value = value.lower()
if value not in self.choices:
raise ValueError("'%s' is not a valid choice in %s" % (
value, self.choices))
return value
category = ChoiceCI('population', 'buildings')
class Choices(Choice):
"""
Convert the choices, passed as a comma separated string, into a tuple
of validated strings. For instance
>>> Choices('xml', 'csv')('xml,csv')
('xml', 'csv')
"""
def __call__(self, value):
values = value.lower().split(',')
for val in values:
if val not in self.choices:
raise ValueError("'%s' is not a valid choice in %s" % (
val, self.choices))
return tuple(values)
export_formats = Choices('', 'xml', 'geojson', 'txt', 'csv', 'npz')
def hazard_id(value):
"""
>>> hazard_id('')
()
>>> hazard_id('-1')
(-1,)
>>> hazard_id('42')
(42,)
>>> hazard_id('42,3')
(42, 3)
>>> hazard_id('42,3,4')
(42, 3, 4)
>>> hazard_id('42:3')
Traceback (most recent call last):
...
ValueError: Invalid hazard_id '42:3'
"""
if not value:
return ()
try:
return tuple(map(int, value.split(',')))
except:
raise ValueError('Invalid hazard_id %r' % value)
class Regex(object):
"""
Compare the value with the given regex
"""
def __init__(self, regex):
self.rx = re.compile(regex)
self.__name__ = 'Regex[%s]' % regex
def __call__(self, value):
if self.rx.match(value) is None:
raise ValueError("'%s' does not match the regex '%s'" %
(value, self.rx.pattern))
return value
name = Regex(r'^[a-zA-Z_]\w*$')
name_with_dashes = Regex(r'^[a-zA-Z_][\w\-]*$')
class SimpleId(object):
"""
Check if the given value is a valid ID.
:param length: maximum length of the ID
:param regex: accepted characters
"""
def __init__(self, length, regex=r'^[\w_\-]+$'):
self.length = length
self.regex = regex
self.__name__ = 'SimpleId(%d, %s)' % (length, regex)
def __call__(self, value):
if max(map(ord, value)) > 127:
raise ValueError(
'Invalid ID %r: the only accepted chars are a-zA-Z0-9_-'
% value)
elif len(value) > self.length:
raise ValueError("The ID '%s' is longer than %d character" %
(value, self.length))
elif re.match(self.regex, value):
return value
raise ValueError(
"Invalid ID '%s': the only accepted chars are a-zA-Z0-9_-" % value)
MAX_ID_LENGTH = 60
ASSET_ID_LENGTH = 100
simple_id = SimpleId(MAX_ID_LENGTH)
asset_id = SimpleId(ASSET_ID_LENGTH)
source_id = SimpleId(MAX_ID_LENGTH, r'^[\w\.\-_]+$')
nice_string = SimpleId( # nice for Windows, Linux, HDF5 and XML
ASSET_ID_LENGTH, r'[a-zA-Z0-9\.`!#$%\(\)\+/,;@\[\]\^_{|}~-]+')
class FloatRange(object):
def __init__(self, minrange, maxrange, name=''):
self.minrange = minrange
self.maxrange = maxrange
self.name = name
self.__name__ = 'FloatRange[%s:%s]' % (minrange, maxrange)
def __call__(self, value):
f = float_(value)
if f > self.maxrange:
raise ValueError("%s %s is bigger than the maximum (%s)" %
(self.name, f, self.maxrange))
if f < self.minrange:
raise ValueError("%s %s is smaller than the minimum (%s)" %
(self.name, f, self.minrange))
return f
magnitude = FloatRange(0, 11, 'magnitude')
def not_empty(value):
"""Check that the string is not all blanks"""
if value is None or value.strip() == '':
raise ValueError('Got an empty string')
return value
def utf8(value):
r"""
Check that the string is UTF-8. Returns an encode bytestring.
>>> utf8(b'\xe0') # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Not UTF-8: ...
"""
try:
if isinstance(value, bytes):
return value.decode('utf-8')
else:
return value
except:
raise ValueError('Not UTF-8: %r' % value)
def utf8_not_empty(value):
"""Check that the string is UTF-8 and not empty"""
return utf8(not_empty(value))
def namelist(value):
"""
:param value: input string
:returns: list of identifiers separated by whitespace or commas
>>> namelist('a,b')
['a', 'b']
>>> namelist('a1 b_2\t_c')
['a1', 'b_2', '_c']
>>> namelist('a1 b_2 1c')
Traceback (most recent call last):
...
ValueError: List of names containing an invalid name: 1c
"""
names = value.replace(',', ' ').split()
for n in names:
try:
name(n)
except ValueError:
raise ValueError('List of names containing an invalid name:'
' %s' % n)
return names
def float_(value):
"""
:param value: input string
:returns: a floating point number
"""
try:
return float(value)
except:
raise ValueError("'%s' is not a float" % value)
def nonzero(value):
"""
:param value: input string
:returns: the value unchanged
>>> nonzero('1')
'1'
>>> nonzero('0')
Traceback (most recent call last):
...
ValueError: '0' is zero
"""
if float_(value) == 0:
raise ValueError("'%s' is zero" % value)
return value
def longitude(value):
"""
:param value: input string
:returns: longitude float, rounded to 5 digits, i.e. 1 meter maximum
>>> longitude('0.123456')
0.12346
"""
lon = round(float_(value), 5)
if lon > 180.:
raise ValueError('longitude %s > 180' % lon)
elif lon < -180.:
raise ValueError('longitude %s < -180' % lon)
return lon
def latitude(value):
"""
:param value: input string
:returns: latitude float, rounded to 5 digits, i.e. 1 meter maximum
>>> latitude('-0.123456')
-0.12346
"""
lat = round(float_(value), 5)
if lat > 90.:
raise ValueError('latitude %s > 90' % lat)
elif lat < -90.:
raise ValueError('latitude %s < -90' % lat)
return lat
def longitudes(value):
"""
:param value: a comma separated string of longitudes
:returns: a list of longitudes
"""
return [longitude(v) for v in value.split(',')]
def latitudes(value):
"""
:param value: a comma separated string of latitudes
:returns: a list of latitudes
"""
return [latitude(v) for v in value.split(',')]
depth = float_
def lon_lat(value):
"""
:param value: a pair of coordinates
:returns: a tuple (longitude, latitude)
>>> lon_lat('12 14')
(12.0, 14.0)
"""
lon, lat = value.split()
return longitude(lon), latitude(lat)
def point(value):
"""
:param value: a tuple of coordinates as a string (2D or 3D)
:returns: a tuple of coordinates as a string (2D or 3D)
"""
lst = value.split()
dim = len(lst)
if dim == 2:
return longitude(lst[0]), latitude(lst[1]), 0.
elif dim == 3:
return longitude(lst[0]), latitude(lst[1]), depth(lst[2])
else:
raise ValueError('Invalid point format: %s' % value)
def coordinates(value):
"""
Convert a non-empty string into a list of lon-lat coordinates.
>>> coordinates('')
Traceback (most recent call last):
...
ValueError: Empty list of coordinates: ''
>>> coordinates('1.1 1.2')
[(1.1, 1.2, 0.0)]
>>> coordinates('1.1 1.2, 2.2 2.3')
[(1.1, 1.2, 0.0), (2.2, 2.3, 0.0)]
>>> coordinates('1.1 1.2 -0.4, 2.2 2.3 -0.5')
[(1.1, 1.2, -0.4), (2.2, 2.3, -0.5)]
>>> coordinates('0 0 0, 0 0 -1')
Traceback (most recent call last):
...
ValueError: There are overlapping points in 0 0 0, 0 0 -1
"""
if not value.strip():
raise ValueError('Empty list of coordinates: %r' % value)
points = list(map(point, value.split(',')))
num_distinct = len(set(pnt[:2] for pnt in points))
if num_distinct < len(points):
raise ValueError("There are overlapping points in %s" % value)
return points
def wkt_polygon(value):
"""
Convert a string with a comma separated list of coordinates into
a WKT polygon, by closing the ring.
"""
points = ['%s %s' % (lon, lat) for lon, lat, dep in coordinates(value)]
# close the linear polygon ring by appending the first coord to the end
points.append(points[0])
return 'POLYGON((%s))' % ', '.join(points)
def positiveint(value):
"""
:param value: input string
:returns: positive integer
"""
i = int(not_empty(value))
if i < 0:
raise ValueError('integer %d < 0' % i)
return i
def positivefloat(value):
"""
:param value: input string
:returns: positive float
"""
f = float(not_empty(value))
if f < 0:
raise ValueError('float %s < 0' % f)
return f
def positivefloats(value):
"""
:param value:
string of whitespace separated floats
:returns:
a list of positive floats
"""
floats = list(map(positivefloat, value.split()))
return floats
def floats32(value):
"""
:param value:
string of whitespace separated floats
:returns:
an array of 32 bit floats
"""
return numpy.float32(value.split())
_BOOL_DICT = {
'': False,
'0': False,
'1': True,
'false': False,
'true': True,
}
def boolean(value):
"""
:param value: input string such as '0', '1', 'true', 'false'
:returns: boolean
>>> boolean('')
False
>>> boolean('True')
True
>>> boolean('false')
False
>>> boolean('t')
Traceback (most recent call last):
...
ValueError: Not a boolean: t
"""
value = value.strip().lower()
try:
return _BOOL_DICT[value]
except KeyError:
raise ValueError('Not a boolean: %s' % value)
range01 = FloatRange(0, 1)
probability = FloatRange(0, 1)
probability.__name__ = 'probability'
def probabilities(value, rows=0, cols=0):
"""
:param value: input string, comma separated or space separated
:param rows: the number of rows if the floats are in a matrix (0 otherwise)
:param cols: the number of columns if the floats are in a matrix (or 0
:returns: a list of probabilities
>>> probabilities('')
[]
>>> probabilities('1')
[1.0]
>>> probabilities('0.1 0.2')
[0.1, 0.2]
>>> probabilities('0.1, 0.2') # commas are ignored
[0.1, 0.2]
"""
probs = list(map(probability, value.replace(',', ' ').split()))
if rows and cols:
probs = numpy.array(probs).reshape((len(rows), len(cols)))
return probs
def decreasing_probabilities(value):
"""
:param value: input string, comma separated or space separated
:returns: a list of decreasing probabilities
>>> decreasing_probabilities('1')
Traceback (most recent call last):
...
ValueError: Not enough probabilities, found '1'
>>> decreasing_probabilities('0.2 0.1')
[0.2, 0.1]
>>> decreasing_probabilities('0.1 0.2')
Traceback (most recent call last):
...
ValueError: The probabilities 0.1 0.2 are not in decreasing order
"""
probs = probabilities(value)
if len(probs) < 2:
raise ValueError('Not enough probabilities, found %r' % value)
elif sorted(probs, reverse=True) != probs:
raise ValueError('The probabilities %s are not in decreasing order'
% value)
return probs
def intensity_measure_type(value):
"""
Make sure `value` is a valid intensity measure type and return it
in a normalized form
>>> intensity_measure_type('SA(0.10)') # NB: strips the trailing 0
'SA(0.1)'
>>> intensity_measure_type('SA') # this is invalid
Traceback (most recent call last):
...
ValueError: Invalid IMT: 'SA'
"""
try:
return str(imt.from_string(value))
except:
raise ValueError("Invalid IMT: '%s'" % value)
def intensity_measure_types(value):
"""
:param value: input string
:returns: non-empty list of Intensity Measure Type objects
>>> intensity_measure_types('PGA')
['PGA']
>>> intensity_measure_types('PGA, SA(1.00)')
['PGA', 'SA(1.0)']
>>> intensity_measure_types('SA(0.1), SA(0.10)')
Traceback (most recent call last):
...
ValueError: Duplicated IMTs in SA(0.1), SA(0.10)
"""
imts = []
for chunk in value.split(','):
imts.append(str(imt.from_string(chunk.strip())))
if len(distinct(imts)) < len(imts):
raise ValueError('Duplicated IMTs in %s' % value)
return imts
def check_levels(imls, imt):
"""
Raise a ValueError if the given levels are invalid.
:param imls: a list of intensity measure and levels
:param imt: the intensity measure type
>>> check_levels([0.1, 0.2], 'PGA') # ok
>>> check_levels([], 'PGA')
Traceback (most recent call last):
...
ValueError: No imls for PGA: []
>>> check_levels([0.2, 0.1], 'PGA')
Traceback (most recent call last):
...
ValueError: The imls for PGA are not sorted: [0.2, 0.1]
>>> check_levels([0.2, 0.2], 'PGA')
Traceback (most recent call last):
...
ValueError: Found duplicated levels for PGA: [0.2, 0.2]
"""
if len(imls) < 1:
raise ValueError('No imls for %s: %s' % (imt, imls))
elif imls != sorted(imls):
raise ValueError('The imls for %s are not sorted: %s' % (imt, imls))
elif len(distinct(imls)) < len(imls):
raise ValueError("Found duplicated levels for %s: %s" % (imt, imls))
def intensity_measure_types_and_levels(value):
"""
:param value: input string
:returns: Intensity Measure Type and Levels dictionary
>>> intensity_measure_types_and_levels('{"SA(0.10)": [0.1, 0.2]}')
{'SA(0.1)': [0.1, 0.2]}
"""
dic = dictionary(value)
for imt_str, imls in dic.items():
norm_imt = str(imt.from_string(imt_str))
if norm_imt != imt_str:
dic[norm_imt] = imls
del dic[imt_str]
check_levels(imls, imt_str) # ValueError if the levels are invalid
return dic
def loss_ratios(value):
"""
:param value: input string
:returns: dictionary loss_type -> loss ratios
>>> loss_ratios('{"structural": [0.1, 0.2]}')
{'structural': [0.1, 0.2]}
"""
dic = dictionary(value)
for lt, ratios in dic.items():
for ratio in ratios:
if not 0 <= ratio <= 1:
raise ValueError('Loss ratio %f for loss_type %s is not in '
'the range [0, 1]' % (ratio, lt))
check_levels(ratios, lt) # ValueError if the levels are invalid
return dic
def logscale(x_min, x_max, n):
"""
:param x_min: minumum value
:param x_max: maximum value
:param n: number of steps
:returns: an array of n values from x_min to x_max
"""
if not (isinstance(n, int) and n > 0):
raise ValueError('n must be a positive integer, got %s' % n)
if x_min <= 0:
raise ValueError('x_min must be positive, got %s' % x_min)
if x_max <= x_min:
raise ValueError('x_max (%s) must be bigger than x_min (%s)' %
(x_max, x_min))
delta = numpy.log(x_max / x_min)
return numpy.exp(delta * numpy.arange(n) / (n - 1)) * x_min
def dictionary(value):
"""
:param value:
input string corresponding to a literal Python object
:returns:
the Python object
>>> dictionary('')
{}
>>> dictionary('{}')
{}
>>> dictionary('{"a": 1}')
{'a': 1}
>>> dictionary('"vs30_clustering: true"') # an error really done by a user
Traceback (most recent call last):
...
ValueError: '"vs30_clustering: true"' is not a valid Python dictionary
>>> dictionary('{"ls": logscale(0.01, 2, 5)}')
{'ls': [0.01, 0.037606030930863933, 0.14142135623730948, 0.53182958969449856, 1.9999999999999991]}
"""
if not value:
return {}
value = value.replace('logscale(', '("logscale", ') # dirty but quick
try:
dic = dict(ast.literal_eval(value))
except:
raise ValueError('%r is not a valid Python dictionary' % value)
for key, val in dic.items():
try:
has_logscale = (val[0] == 'logscale')
except: # no val[0]
continue
if has_logscale:
dic[key] = list(logscale(*val[1:]))
return dic
# used for the maximum distance parameter in the job.ini file
def floatdict(value):
"""
:param value:
input string corresponding to a literal Python number or dictionary
:returns:
a Python dictionary key -> number
>>> floatdict("200")
{'default': 200}
>>> text = "{'active shallow crust': 250., 'default': 200}"
>>> sorted(floatdict(text).items())
[('active shallow crust', 250.0), ('default', 200)]
"""
value = ast.literal_eval(value)
if isinstance(value, (int, float, list)):
return {'default': value}
return value
def maximum_distance(value):
"""
:param value:
input string corresponding to a valid maximum distance
:returns:
a IntegrationDistance mapping
"""
dic = floatdict(value)
for trt, magdists in dic.items():
if isinstance(magdists, list): # could be a scalar otherwise
magdists.sort() # make sure the list is sorted by magnitude
for mag, dist in magdists: # validate the magnitudes
magnitude(mag)
return IntegrationDistance(dic)
# ########################### SOURCES/RUPTURES ############################# #
def mag_scale_rel(value):
"""
:param value:
name of a Magnitude-Scale relationship in hazardlib
:returns:
the corresponding hazardlib object
"""
value = value.strip()
if value not in SCALEREL:
raise ValueError(
"'%s' is not a recognized magnitude-scale relationship" % value)
return value
def pmf(value):
"""
Comvert a string into a Probability Mass Function.
:param value:
a sequence of probabilities summing up to 1 (no commas)
:returns:
a list of pairs [(probability, index), ...] with index starting from 0
>>> pmf("0.157 0.843")
[(0.157, 0), (0.843, 1)]
"""
probs = probabilities(value)
if sum(map(Decimal, value.split())) != 1:
raise ValueError('The probabilities %s do not sum up to 1!' % value)
return [(p, i) for i, p in enumerate(probs)]
def check_weights(nodes_with_a_weight):
"""
Ensure that the sum of the values is 1
:param nodes_with_a_weight: a list of Node objects with a weight attribute
"""
weights = [n['weight'] for n in nodes_with_a_weight]
if abs(sum(weights) - 1.) > 1E-12:
raise ValueError('The weights do not sum up to 1: %s' % weights)
return nodes_with_a_weight
def weights(value):
"""
Space-separated list of weights:
>>> weights('0.1 0.2 0.7')
[0.1, 0.2, 0.7]
>>> weights('0.1 0.2 0.8')
Traceback (most recent call last):
...
ValueError: The weights do not sum up to 1: [0.1, 0.2, 0.8]
"""
probs = probabilities(value)
if abs(sum(probs) - 1.) > 1E-12:
raise ValueError('The weights do not sum up to 1: %s' % probs)
return probs
def hypo_list(nodes):
"""
:param nodes: a hypoList node with N hypocenter nodes
:returns: a numpy array of shape (N, 3) with strike, dip and weight
"""
check_weights(nodes)
data = []
for node in nodes:
data.append([node['alongStrike'], node['downDip'], node['weight']])
return numpy.array(data, float)
def slip_list(nodes):
"""
:param nodes: a slipList node with N slip nodes
:returns: a numpy array of shape (N, 2) with slip angle and weight
"""
check_weights(nodes)
data = []
for node in nodes:
data.append([slip_range(~node), node['weight']])
return numpy.array(data, float)
def posList(value):
"""
:param value:
a string with the form `lon1 lat1 [depth1] ... lonN latN [depthN]`
without commas, where the depts are optional.
:returns:
a list of floats without other validations
"""
values = value.split()
num_values = len(values)
if num_values % 3 and num_values % 2:
raise ValueError('Wrong number: nor pairs not triplets: %s' % values)
try:
return list(map(float_, values))
except Exception as exc:
raise ValueError('Found a non-float in %s: %s' % (value, exc))
def point3d(value, lon, lat, depth):
"""
This is used to convert nodes of the form
<hypocenter lon="LON" lat="LAT" depth="DEPTH"/>
:param value: None
:param lon: longitude string
:param lat: latitude string
:returns: a validated triple (lon, lat, depth)
"""
return longitude(lon), latitude(lat), positivefloat(depth)
strike_range = FloatRange(0, 360)
slip_range = strike_range
dip_range = FloatRange(0, 90)
rake_range = FloatRange(-180, 180)
def ab_values(value):
"""
a and b values of the GR magniture-scaling relation.
a is a positive float, b is just a float.
"""
a, b = value.split()
return positivefloat(a), float_(b)
def integers(value):
"""
:param value: input string
:returns: non-empty list of integers
>>> integers('1, 2')
[1, 2]
>>> integers(' ')
Traceback (most recent call last):
...
ValueError: Not a list of integers: ' '
"""
if '.' in value:
raise ValueError('There are decimal points in %s' % value)
values = value.replace(',', ' ').split()
if not values:
raise ValueError('Not a list of integers: %r' % value)
try:
ints = [int(float(v)) for v in values]
except:
raise ValueError('Not a list of integers: %r' % value)
return ints
def positiveints(value):
"""
>>> positiveints('1, -1')
Traceback (most recent call last):
...
ValueError: -1 is negative in '1, -1'
"""
ints = integers(value)
for val in ints:
if val < 0:
raise ValueError('%d is negative in %r' % (val, value))
return ints
def simple_slice(value):
"""
>>> simple_slice('2:5')
(2, 5)
>>> simple_slice('0:None')
(0, None)
"""
try:
start, stop = value.split(':')
start = ast.literal_eval(start)
stop = ast.literal_eval(stop)
if start is not None and stop is not None:
assert start < stop
except:
raise ValueError('invalid slice: %s' % value)
return (start, stop)
# ############################## site model ################################ #
vs30_type = ChoiceCI('measured', 'inferred')
SiteParam = collections.namedtuple(
'SiteParam', 'lon lat depth z1pt0 z2pt5 measured vs30 backarc'.split())
def site_param(z1pt0, z2pt5, vs30Type, vs30, lon, lat,
depth=0, backarc="false"):
"""
Used to convert a node like
<site lon="24.7125" lat="42.779167" vs30="462" vs30Type="inferred"
z1pt0="100" z2pt5="5" backarc="False"/>
into a 7-tuple (z1pt0, z2pt5, measured, vs30, backarc, lon, lat)
"""
return SiteParam(z1pt0=positivefloat(z1pt0), z2pt5=positivefloat(z2pt5),
measured=vs30_type(vs30Type) == 'measured',
vs30=positivefloat(vs30), lon=longitude(lon),
lat=latitude(lat), depth=float_(depth),
backarc=boolean(backarc))
# used for the exposure validation
cost_type = Choice('structural', 'nonstructural', 'contents',
'business_interruption')
cost_type_type = Choice('aggregated', 'per_area', 'per_asset')
###########################################################################
class Param(object):
"""
A descriptor for validated parameters with a default, to be
used as attributes in ParamSet objects.
:param validator: the validator
:param default: the default value
"""
NODEFAULT = object()
def __init__(self, validator, default=NODEFAULT, name=None):
if not callable(validator):
raise ValueError(
'%r for %s is not a validator: it is not callable'
% (validator, name))
if not hasattr(validator, '__name__'):
raise ValueError(
'%r for %s is not a validator: it has no __name__'
% (validator, name))
self.validator = validator
self.default = default
self.name = name # set by ParamSet.__metaclass__
def __get__(self, obj, objclass):
if obj is not None:
if self.default is self.NODEFAULT:
raise AttributeError(self.name)
return self.default
return self
class MetaParamSet(type):
"""
Set the `.name` attribute of every Param instance defined inside
any subclass of ParamSet.
"""
def __init__(cls, name, bases, dic):
for name, val in dic.items():
if isinstance(val, Param):
val.name = name
# used in commonlib.oqvalidation
class ParamSet(with_metaclass(MetaParamSet, hdf5.LiteralAttrs)):
"""
A set of valid interrelated parameters. Here is an example
of usage:
>>> class MyParams(ParamSet):
... a = Param(positiveint)
... b = Param(positivefloat)
...
... def is_valid_not_too_big(self):
... "The sum of a and b must be under 10: a={a} and b={b}"
... return self.a + self.b < 10
>>> mp = MyParams(a='1', b='7.2')
>>> mp
<MyParams a=1, b=7.2>
>>> MyParams(a='1', b='9.2').validate()
Traceback (most recent call last):
...
ValueError: The sum of a and b must be under 10: a=1 and b=9.2
The constrains are applied in lexicographic order. The attribute
corresponding to a Param descriptor can be set as usual:
>>> mp.a = '2'
>>> mp.a
'2'
A list with the literal strings can be extracted as follows:
>>> mp.to_params()
[('a', "'2'"), ('b', '7.2')]
It is possible to build a new object from a dictionary of parameters
which are assumed to be already validated:
>>> MyParams.from_(dict(a="'2'", b='7.2'))
<MyParams a='2', b=7.2>
"""
params = {}
@classmethod
def check(cls, dic):
"""
Convert a dictionary name->string into a dictionary name->value
by converting the string. If the name does not correspond to a
known parameter, just ignore it and print a warning.
"""
res = {}
for name, text in dic.items():
try:
p = getattr(cls, name)
except AttributeError:
logging.warn('Ignored unknown parameter %s', name)
else:
res[name] = p.validator(text)
return res
@classmethod
def from_(cls, dic):
"""
Build a new ParamSet from a dictionary of string-valued parameters
which are assumed to be already valid.
"""
self = cls.__new__(cls)
for k, v in dic.items():
setattr(self, k, ast.literal_eval(v))
return self
def to_params(self):
"""
Convert the instance dictionary into a sorted list of pairs
(name, valrepr) where valrepr is the string representation of
the underlying value.
"""
dic = self.__dict__
return [(k, repr(dic[k])) for k in sorted(dic)
if not k.startswith('_')]
def __init__(self, **names_vals):
for name, val in names_vals.items():
if name.startswith(('_', 'is_valid_')):
raise NameError('The parameter name %s is not acceptable'
% name)
try:
convert = getattr(self.__class__, name).validator
except AttributeError:
logging.warn("The parameter '%s' is unknown, ignoring" % name)
continue
try:
value = convert(val)
except Exception as exc:
raise ValueError('%s: could not convert to %s: %s=%s'
% (exc, convert.__name__, name, val))
setattr(self, name, value)
def validate(self):
"""
Apply the `is_valid` methods to self and possibly raise a ValueError.
"""
# it is important to have the validator applied in a fixed order
valids = [getattr(self, valid)
for valid in sorted(dir(self.__class__))
if valid.startswith('is_valid_')]
for is_valid in valids:
if not is_valid():
docstring = '\n'.join(
line.strip() for line in is_valid.__doc__.splitlines())
doc = docstring.format(**vars(self))
raise ValueError(doc)
def __iter__(self):
for item in sorted(vars(self).items()):
yield item