# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2015-2017 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
import operator
import logging
import collections
import numpy
from openquake.baselib import hdf5, performance
from openquake.baselib.general import (
groupby, group_array, get_array, AccumDict)
from openquake.hazardlib import site, calc
from openquake.risklib import scientific, riskmodels
[docs]class ValidationError(Exception):
pass
U8 = numpy.uint8
U16 = numpy.uint16
U32 = numpy.uint32
F32 = numpy.float32
U64 = numpy.uint64
TWO48 = 2 ** 48
EVENTS = -2
NBYTES = -1
FIELDS = ('site_id', 'lon', 'lat', 'idx', 'area', 'number',
'occupants', 'deductible-', 'insurance_limit-', 'retrofitted-')
by_taxonomy = operator.attrgetter('taxonomy')
aids_dt = numpy.dtype([('aids', hdf5.vuint32)])
indices_dt = numpy.dtype([('start', U32), ('stop', U32)])
[docs]def get_refs(assets, hdf5path):
"""
Debugging method returning the string IDs of the assets from the datastore
"""
with hdf5.File(hdf5path, 'r') as f:
return f['asset_refs'][[a.idx for a in assets]]
[docs]def read_composite_risk_model(dstore):
"""
:param dstore: a DataStore instance
:returns: a :class:`CompositeRiskModel` instance
"""
oqparam = dstore['oqparam']
crm = dstore.getitem('composite_risk_model')
rmdict, retrodict = {}, {}
for taxo, rm in crm.items():
rmdict[taxo] = {}
retrodict[taxo] = {}
for lt in rm:
lt = str(lt) # ensure Python 2-3 compatibility
rf = dstore['composite_risk_model/%s/%s' % (taxo, lt)]
if lt.endswith('_retrofitted'):
# strip _retrofitted, since len('_retrofitted') = 12
retrodict[taxo][lt[:-12]] = rf
else:
rmdict[taxo][lt] = rf
return CompositeRiskModel(oqparam, rmdict, retrodict)
[docs]class CompositeRiskModel(collections.Mapping):
"""
A container (imt, taxonomy) -> riskmodel
:param oqparam:
an :class:`openquake.commonlib.oqvalidation.OqParam` instance
:param rmdict:
a dictionary (imt, taxonomy) -> loss_type -> risk_function
"""
def __init__(self, oqparam, rmdict, retrodict):
self.damage_states = []
self._riskmodels = {}
if getattr(oqparam, 'limit_states', []):
# classical_damage/scenario_damage calculator
if oqparam.calculation_mode in ('classical', 'scenario'):
# case when the risk files are in the job_hazard.ini file
oqparam.calculation_mode += '_damage'
if 'exposure' not in oqparam.inputs:
raise RuntimeError(
'There are risk files in %r but not '
'an exposure' % oqparam.inputs['job_ini'])
self.damage_states = ['no_damage'] + oqparam.limit_states
delattr(oqparam, 'limit_states')
for taxonomy, ffs_by_lt in rmdict.items():
self._riskmodels[taxonomy] = riskmodels.get_riskmodel(
taxonomy, oqparam, fragility_functions=ffs_by_lt)
elif oqparam.calculation_mode.endswith('_bcr'):
# classical_bcr calculator
for (taxonomy, vf_orig), (taxonomy_, vf_retro) in \
zip(rmdict.items(), retrodict.items()):
assert taxonomy == taxonomy_ # same imt and taxonomy
self._riskmodels[taxonomy] = riskmodels.get_riskmodel(
taxonomy, oqparam,
vulnerability_functions_orig=vf_orig,
vulnerability_functions_retro=vf_retro)
else:
# classical, event based and scenario calculators
for taxonomy, vfs in rmdict.items():
for vf in vfs.values():
# set the seed; this is important for the case of
# VulnerabilityFunctionWithPMF
vf.seed = oqparam.random_seed
self._riskmodels[taxonomy] = riskmodels.get_riskmodel(
taxonomy, oqparam, vulnerability_functions=vfs)
self.init(oqparam)
[docs] def init(self, oqparam):
self.lti = {} # loss_type -> idx
self.covs = 0 # number of coefficients of variation
self.curve_params = self.make_curve_params(oqparam)
self.loss_types = [cp.loss_type for cp in self.curve_params]
self.insured_losses = oqparam.insured_losses
expected_loss_types = set(self.loss_types)
taxonomies = set()
for taxonomy, riskmodel in self._riskmodels.items():
taxonomies.add(taxonomy)
riskmodel.compositemodel = self
# save the number of nonzero coefficients of variation
for vf in riskmodel.risk_functions.values():
if hasattr(vf, 'covs') and vf.covs.any():
self.covs += 1
missing = expected_loss_types - set(riskmodel.risk_functions)
if missing:
raise ValidationError(
'Missing vulnerability function for taxonomy %s and loss'
' type %s' % (taxonomy, ', '.join(missing)))
self.taxonomies = sorted(taxonomies)
[docs] def get_min_iml(self):
iml = collections.defaultdict(list)
for taxo, rm in self._riskmodels.items():
for lt, rf in rm.risk_functions.items():
iml[rf.imt].append(rf.imls[0])
return {imt: min(iml[imt]) for imt in iml}
[docs] def make_curve_params(self, oqparam):
# NB: populate the inner lists .loss_types too
cps = []
default_loss_ratios = numpy.linspace(
0, 1, oqparam.loss_curve_resolution + 1)[1:]
loss_types = self._get_loss_types()
for l, loss_type in enumerate(loss_types):
if oqparam.calculation_mode in ('classical', 'classical_risk'):
curve_resolutions = set()
lines = []
for key in sorted(self):
rm = self[key]
if loss_type in rm.loss_ratios:
ratios = rm.loss_ratios[loss_type]
curve_resolutions.add(len(ratios))
lines.append('%s %d' % (
rm.risk_functions[loss_type], len(ratios)))
if len(curve_resolutions) > 1: # example in test_case_5
logging.info(
'Different num_loss_ratios:\n%s', '\n'.join(lines))
cp = scientific.CurveParams(
l, loss_type, max(curve_resolutions), ratios, True)
else: # event_based or scenario calculators
cp = scientific.CurveParams(
l, loss_type, oqparam.loss_curve_resolution,
default_loss_ratios, False)
cps.append(cp)
self.lti[loss_type] = l
return cps
[docs] def get_loss_ratios(self):
"""
:returns: a 1-dimensional composite array with loss ratios by loss type
"""
lst = [('user_provided', numpy.bool)]
for cp in self.curve_params:
lst.append((cp.loss_type, F32, len(cp.ratios)))
loss_ratios = numpy.zeros(1, numpy.dtype(lst))
for cp in self.curve_params:
loss_ratios['user_provided'] = cp.user_provided
loss_ratios[cp.loss_type] = tuple(cp.ratios)
return loss_ratios
def _get_loss_types(self):
"""
:returns: a sorted list with all the loss_types contained in the model
"""
ltypes = set()
for rm in self.values():
ltypes.update(rm.loss_types)
return sorted(ltypes)
def __getitem__(self, taxonomy):
return self._riskmodels[taxonomy]
def __iter__(self):
return iter(sorted(self._riskmodels))
def __len__(self):
return len(self._riskmodels)
[docs] def gen_outputs(self, riskinput, monitor=performance.Monitor(),
assetcol=None):
"""
Group the assets per taxonomy and compute the outputs by using the
underlying riskmodels. Yield the outputs generated as dictionaries
out_by_lr.
:param riskinput: a RiskInput instance
:param monitor: a monitor object used to measure the performance
:param assetcol: not None only for event based risk
"""
mon_context = monitor('building context')
mon_hazard = monitor('building hazard')
mon_risk = monitor('computing risk', measuremem=False)
hazard_getter = riskinput.hazard_getter
sids = hazard_getter.sids
with mon_context:
if assetcol is None: # scenario, classical
assets_by_site = riskinput.assets_by_site
else:
assets_by_site = assetcol.assets_by_site()
# group the assets by taxonomy
dic = collections.defaultdict(list)
for sid, assets in zip(sids, assets_by_site):
group = groupby(assets, by_taxonomy)
for taxonomy in group:
epsgetter = riskinput.epsilon_getter
dic[taxonomy].append((sid, group[taxonomy], epsgetter))
imti = {imt: i for i, imt in enumerate(hazard_getter.imtls)}
if hasattr(hazard_getter, 'rlzs_by_gsim'):
# save memory in event based risk by working one gsim at the time
for gsim in hazard_getter.rlzs_by_gsim:
with mon_hazard:
hazard = hazard_getter.get_hazard(gsim)
with mon_risk:
for out in self._gen_outputs(
hazard, imti, dic, hazard_getter.eids):
yield out
else:
with mon_hazard:
hazard = hazard_getter.get_hazard()
with mon_risk:
for out in self._gen_outputs(
hazard, imti, dic, hazard_getter.eids):
yield out
if hasattr(hazard_getter, 'gmdata'): # for event based risk
riskinput.gmdata = hazard_getter.gmdata
def _gen_outputs(self, hazard, imti, dic, eids):
for taxonomy in sorted(dic):
riskmodel = self[taxonomy]
rangeM = [imti[riskmodel.risk_functions[lt].imt]
for lt in self.loss_types]
for sid, assets, epsgetter in dic[taxonomy]:
try:
haz_by_sid = hazard[sid]
except KeyError: # no hazard for this site
continue
for rlzi, haz in sorted(haz_by_sid.items()):
if isinstance(haz, numpy.ndarray):
# event based and scenario
eids = haz['eid']
data = {i: (haz['gmv'][:, i], eids)
for i in rangeM}
elif eids is not None: # gmf_ebrisk
data = {i: (haz[i], eids) for i in rangeM}
else: # classical
data = haz
data_by_lt = [data[imti[riskmodel.risk_functions[lt].imt]]
for lt in self.loss_types]
out = riskmodel.get_output(assets, data_by_lt, epsgetter)
out.loss_types = self.loss_types
out.assets = assets
out.sid = sid
out.rlzi = rlzi
out.eids = eids
yield out
def __toh5__(self):
loss_types = hdf5.array_of_vstr(self._get_loss_types())
return self._riskmodels, dict(covs=self.covs, loss_types=loss_types)
def __repr__(self):
lines = ['%s: %s' % item for item in sorted(self.items())]
return '<%s(%d, %d)\n%s>' % (
self.__class__.__name__, len(lines), self.covs, '\n'.join(lines))
[docs]class GmfDataGetter(collections.Mapping):
"""
A dictionary-like object {sid: dictionary by realization index}
"""
def __init__(self, dstore, sids):
self.dstore = dstore
self.sids = sids
def __getitem__(self, sid):
dset = self.dstore['gmf_data/data']
idxs = self.dstore['gmf_data/indices'][sid]
array = numpy.concatenate([dset[start:stop] for start, stop in idxs])
return group_array(array, 'rlzi')
def __iter__(self):
return iter(self.sids)
def __len__(self):
return len(self.sids)
[docs]class HazardGetter(object):
"""
:param dstore:
DataStore instance
:param kind:
kind of HazardGetter; can be 'poe' or 'gmf'
:param sids:
hazard site IDs
:param imtls:
intensity measure types and levels object
:param eids:
an array of event IDs (or None)
"""
def __init__(self, dstore, kind, getter, imtls, eids=None):
assert kind in ('poe', 'gmf'), kind
self.kind = kind
self.sids = getter.sids
self._getter = getter
self.imtls = imtls
self.eids = eids
self.num_rlzs = dstore['csm_info'].get_num_rlzs()
oq = dstore['oqparam']
self.E = getattr(oq, 'number_of_ground_motion_fields', None)
self.I = len(oq.imtls)
if kind == 'gmf':
# now some attributes set for API compatibility with the GmfGetter
# number of ground motion fields
# dictionary rlzi -> array(imts, events, nbytes)
self.gmdata = AccumDict(
accum=numpy.zeros(len(self.imtls) + 2, F32))
[docs] def init(self):
if hasattr(self, 'data'): # alreay initialized
return
self.data = collections.OrderedDict()
if self.kind == 'poe':
hcurves = self._getter.get_hcurves(self.imtls) # shape (R, N)
for sid, hcurve_by_rlz in zip(self.sids, hcurves.T):
self.data[sid] = datadict = {}
for rlzi, hcurve in enumerate(hcurve_by_rlz):
datadict[rlzi] = lst = [None for imt in self.imtls]
for imti, imt in enumerate(self.imtls):
lst[imti] = hcurve[imt] # imls
else: # gmf
for sid in self.sids:
self.data[sid] = data = self._getter[sid]
if not data: # no GMVs, return 0, counted in no_damage
self.data[sid] = {
rlzi: numpy.zeros((self.E, self.I),
[('gmv', F32), ('eid', U64)])
for rlzi in range(self.num_rlzs)}
[docs] def get_hazard(self):
"""
:param gsim: a GSIM instance
:returns: an OrderedDict rlzi -> datadict
"""
return self.data
[docs]class GmfGetter(object):
"""
An hazard getter with methods .gen_gmv and .get_hazard returning
ground motion values.
"""
kind = 'gmf'
def __init__(self, rlzs_by_gsim, ebruptures, sitecol, imtls,
min_iml, truncation_level, correlation_model, samples=1):
assert sitecol is sitecol.complete, sitecol
self.grp_id = ebruptures[0].grp_id
self.rlzs_by_gsim = rlzs_by_gsim
self.num_rlzs = sum(len(rlzs) for gsim, rlzs in rlzs_by_gsim.items())
self.ebruptures = ebruptures
self.sitecol = sitecol
self.imtls = imtls
self.min_iml = min_iml
self.truncation_level = truncation_level
self.correlation_model = correlation_model
self.samples = samples
self.gmf_data_dt = numpy.dtype(
[('rlzi', U16), ('sid', U32),
('eid', U64), ('gmv', (F32, (len(imtls),)))])
[docs] def init(self):
"""
Initialize the computers. Should be called on the workers
"""
self.N = len(self.sitecol.complete)
self.I = I = len(self.imtls)
self.R = sum(len(rlzs) for rlzs in self.rlzs_by_gsim.values())
self.gmv_dt = numpy.dtype(
[('sid', U32), ('eid', U64), ('gmv', (F32, (I,)))])
self.gmv_eid_dt = numpy.dtype([('gmv', (F32, (I,))), ('eid', U64)])
self.sids = self.sitecol.sids
self.computers = []
gsims = sorted(self.rlzs_by_gsim)
for ebr in self.ebruptures:
sites = site.FilteredSiteCollection(
ebr.sids, self.sitecol.complete)
computer = calc.gmf.GmfComputer(
ebr, sites, self.imtls, gsims,
self.truncation_level, self.correlation_model)
self.computers.append(computer)
# dictionary rlzi -> array(imtls, events, nbytes)
self.gmdata = AccumDict(accum=numpy.zeros(len(self.imtls) + 2, F32))
self.eids = numpy.concatenate(
[ebr.events['eid'] for ebr in self.ebruptures])
# dictionary eid -> index
self.eid2idx = dict(zip(self.eids, range(len(self.eids))))
[docs] def gen_gmv(self, gsim=None):
"""
Compute the GMFs for the given realization and populate the .gmdata
array. Yields tuples of the form (sid, eid, imti, gmv).
"""
itemsize = self.gmf_data_dt.itemsize
sample = 0 # in case of sampling the realizations have a corresponding
# sample number from 0 to the number of samples of the given src model
gsims = self.rlzs_by_gsim if gsim is None else [gsim]
for gsim in gsims: # OrderedDict
rlzs = self.rlzs_by_gsim[gsim]
for computer in self.computers:
rup = computer.rupture
sids = computer.sites.sids
if self.samples > 1:
# events of the current slice of realizations
all_eids = [get_array(rup.events, sample=s)['eid']
for s in range(sample, sample + len(rlzs))]
else:
all_eids = [rup.events['eid']] * len(rlzs)
num_events = sum(len(eids) for eids in all_eids)
# NB: the trick for performance is to keep the call to
# compute.compute outside of the loop over the realizations
# it is better to have few calls producing big arrays
array = computer.compute(gsim, num_events).transpose(1, 0, 2)
# shape (N, I, E)
for i, miniml in enumerate(self.min_iml): # gmv < minimum
arr = array[:, i, :]
arr[arr < miniml] = 0
n = 0
for r, rlzi in enumerate(rlzs):
e = len(all_eids[r])
gmdata = self.gmdata[rlzi]
gmdata[EVENTS] += e
for ei, eid in enumerate(all_eids[r]):
gmf = array[:, :, n + ei] # shape (N, I)
tot = gmf.sum(axis=0) # shape (I,)
if not tot.sum():
continue
for i, val in enumerate(tot):
gmdata[i] += val
for sid, gmv in zip(sids, gmf):
if gmv.sum():
gmdata[NBYTES] += itemsize
yield rlzi, sid, eid, gmv
n += e
sample += len(rlzs)
[docs] def get_hazard(self, gsim=None, data=None):
"""
:param data: if given, an iterator of records of dtype gmf_data_dt
:returns: an array (rlzi, sid, imti) -> array(gmv, eid)
"""
if data is None:
data = self.gen_gmv(gsim)
hazard = numpy.array([collections.defaultdict(list)
for _ in range(self.N)])
for rlzi, sid, eid, gmv in data:
hazard[sid][rlzi].append((gmv, eid))
for haz in hazard:
for rlzi in haz:
haz[rlzi] = numpy.array(haz[rlzi], self.gmv_eid_dt)
return hazard
[docs]def make_eps(assetcol, num_samples, seed, correlation):
"""
:param assetcol: an AssetCollection instance
:param int num_samples: the number of ruptures
:param int seed: a random seed
:param float correlation: the correlation coefficient
:returns: epsilons matrix of shape (num_assets, num_samples)
"""
assets_by_taxo = groupby(assetcol, by_taxonomy)
eps = numpy.zeros((len(assetcol), num_samples), numpy.float32)
for taxonomy, assets in assets_by_taxo.items():
# the association with the epsilons is done in order
assets.sort(key=operator.attrgetter('idx'))
shape = (len(assets), num_samples)
logging.info('Building %s epsilons for taxonomy %s', shape, taxonomy)
zeros = numpy.zeros(shape)
epsilons = scientific.make_epsilons(zeros, seed, correlation)
for asset, epsrow in zip(assets, epsilons):
eps[asset.ordinal] = epsrow
return eps
[docs]def str2rsi(key):
"""
Convert a string of the form 'rlz-XXXX/sid-YYYY/ZZZ'
into a triple (XXXX, YYYY, ZZZ)
"""
rlzi, sid, imt = key.split('/')
return int(rlzi[4:]), int(sid[4:]), imt
[docs]def rsi2str(rlzi, sid, imt):
"""
Convert a triple (XXXX, YYYY, ZZZ) into a string of the form
'rlz-XXXX/sid-YYYY/ZZZ'
"""
return 'rlz-%04d/sid-%04d/%s' % (rlzi, sid, imt)
[docs]class LossRatiosGetter(object):
"""
Read loss ratios from the datastore for all realizations or for a specific
realization.
:param dstore: a DataStore instance
"""
def __init__(self, dstore, aids=None, lazy=True):
self.dstore = dstore
dset = self.dstore['all_loss_ratios/indices']
self.aids = list(aids or range(len(dset)))
self.indices = [dset[aid] for aid in self.aids]
self.data = None if lazy else self.get_all()
# used in the loss curves exporter
[docs] def get(self, rlzi):
"""
:param rlzi: a realization ordinal
:returns: a dictionary aid -> array of shape (E, LI)
"""
data = self.dstore['all_loss_ratios/data']
dic = collections.defaultdict(list) # aid -> ratios
for aid, idxs in zip(self.aids, self.indices):
for idx in idxs:
for rec in data[idx[0]: idx[1]]: # dtype (rlzi, ratios)
if rlzi == rec['rlzi']:
dic[aid].append(rec['ratios'])
return {a: numpy.array(dic[a]) for a in dic}
# used in the calculator
[docs] def get_all(self):
"""
:returns: a list of A composite arrays of dtype `lrs_dt`
"""
if getattr(self, 'data', None) is not None:
return self.data
self.dstore.open() # if closed
data = self.dstore['all_loss_ratios/data']
loss_ratio_data = []
for aid, idxs in zip(self.aids, self.indices):
if len(idxs):
arr = numpy.concatenate([data[idx[0]: idx[1]] for idx in idxs])
else:
# FIXME: a test for this case is missing
arr = numpy.array([], data.dtype)
loss_ratio_data.append(arr)
return loss_ratio_data