Source code for openquake.calculators.scenario
# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2014-2017 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
import collections
import numpy
from openquake.hazardlib.calc import filters
from openquake.hazardlib.calc.gmf import GmfComputer
from openquake.risklib.riskinput import gmf_data_dt
from openquake.commonlib import readinput, source, calc
from openquake.calculators import base
@base.calculators.add('scenario')
[docs]class ScenarioCalculator(base.HazardCalculator):
"""
Scenario hazard calculator
"""
is_stochastic = True
[docs] def pre_execute(self):
"""
Read the site collection and initialize GmfComputer and seeds
"""
super(ScenarioCalculator, self).pre_execute()
oq = self.oqparam
trunc_level = oq.truncation_level
correl_model = oq.get_correl_model()
rup = readinput.get_rupture(oq)
rup.seed = self.oqparam.random_seed
self.gsims = readinput.get_gsims(oq)
maxdist = oq.maximum_distance['default']
with self.monitor('filtering sites', autoflush=True):
self.sitecol = filters.filter_sites_by_distance_to_rupture(
rup, maxdist, self.sitecol)
if self.sitecol is None:
raise RuntimeError(
'All sites were filtered out! maximum_distance=%s km' %
maxdist)
# eid, ses, occ, sample
events = numpy.zeros(oq.number_of_ground_motion_fields,
calc.stored_event_dt)
events['eid'] = numpy.arange(oq.number_of_ground_motion_fields)
rupture = calc.EBRupture(rup, self.sitecol.sids, events, 0, 0)
rupture.sidx = 0
rupture.eidx1 = 0
rupture.eidx2 = len(events)
self.datastore['sids'] = self.sitecol.sids
self.datastore['events/grp-00'] = events
array, nbytes = calc.RuptureSerializer.get_array_nbytes([rupture])
self.datastore.extend('ruptures/grp-00', array, nbytes=nbytes)
self.computer = GmfComputer(
rupture, self.sitecol, oq.imtls, self.gsims,
trunc_level, correl_model)
gsim_lt = readinput.get_gsim_lt(oq)
cinfo = source.CompositionInfo.fake(gsim_lt)
self.datastore['csm_info'] = cinfo
self.rlzs_assoc = cinfo.get_rlzs_assoc()
[docs] def execute(self):
"""
Compute the GMFs and return a dictionary gsim -> array gmf_data_dt
"""
res = collections.defaultdict(list)
sids = self.sitecol.sids
self.gmfa = {}
with self.monitor('computing gmfs', autoflush=True):
n = self.oqparam.number_of_ground_motion_fields
for gsim in self.gsims:
gmfa = self.computer.compute(gsim, n) # shape (I, N, E)
self.gmfa[gsim] = gmfa.transpose(1, 0, 2) # shape (N, I, E)
for (imti, sid, eid), gmv in numpy.ndenumerate(gmfa):
res[gsim].append((0, sids[sid], eid, imti, gmv))
return {gsim: numpy.array(res[gsim], gmf_data_dt)
for gsim in res}
[docs] def post_execute(self, gmfa_by_gsim):
"""
:param gmfa: a dictionary gsim -> gmfa
"""
with self.monitor('saving gmfs', autoflush=True):
for gsim in self.gsims:
rlzstr = 'gmf_data/grp-00/%s' % gsim
self.datastore[rlzstr] = gmfa_by_gsim[gsim]
self.datastore.set_attrs(rlzstr, gsim=str(gsim))
self.datastore.set_nbytes('gmf_data')