Source code for openquake.calculators.base

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2014-2017 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
from __future__ import division
import os
import sys
import abc
import pdb
import logging
import operator
import traceback
import collections

import numpy

from openquake.baselib import general, hdf5, __version__ as engine_version
from openquake.baselib.performance import Monitor
from openquake.hazardlib.calc.filters import SourceFilter
from openquake.hazardlib import geo
from openquake.risklib import riskinput
from openquake.commonlib import readinput, datastore, source, calc, riskmodels
from openquake.commonlib.oqvalidation import OqParam
from openquake.baselib.parallel import Starmap, executor, wakeup_pool
from openquake.baselib.python3compat import with_metaclass
from openquake.calculators.export import export as exp

get_taxonomy = operator.attrgetter('taxonomy')
get_weight = operator.attrgetter('weight')
get_trt = operator.attrgetter('src_group_id')
get_imt = operator.attrgetter('imt')

calculators = general.CallableDict(operator.attrgetter('calculation_mode'))

Site = collections.namedtuple('Site', 'sid lon lat')

F32 = numpy.float32


[docs]class InvalidCalculationID(Exception): """ Raised when running a post-calculation on top of an incompatible pre-calculation """
[docs]class AssetSiteAssociationError(Exception): """Raised when there are no hazard sites close enough to any asset"""
rlz_dt = numpy.dtype([('uid', 'S200'), ('model', 'S200'), ('gsims', 'S100'), ('weight', F32)]) logversion = True PRECALC_MAP = dict( classical=['psha'], disaggregation=['psha'], scenario_risk=['scenario'], scenario_damage=['scenario'], classical_risk=['classical'], classical_bcr=['classical'], classical_damage=['classical'], event_based=['event_based', 'event_based_rupture', 'ebrisk', 'event_based_risk', 'ucerf_rupture'], event_based_risk=['event_based', 'event_based_rupture', 'ucerf_rupture', 'event_based_risk'], ucerf_classical=['ucerf_psha'], ucerf_hazard=['ucerf_rupture'])
[docs]def set_array(longarray, shortarray): """ :param longarray: a numpy array of floats of length L >= l :param shortarray: a numpy array of floats of length l Fill `longarray` with the values of `shortarray`, starting from the left. If `shortarry` is shorter than `longarray`, then the remaining elements on the right are filled with `numpy.nan` values. """ longarray[:len(shortarray)] = shortarray longarray[len(shortarray):] = numpy.nan
[docs]def gsim_names(rlz): """ Names of the underlying GSIMs separated by spaces """ return ' '.join(str(v) for v in rlz.gsim_rlz.value)
[docs]def check_precalc_consistency(calc_mode, precalc_mode): """ Defensive programming against users providing an incorrect pre-calculation ID (with ``--hazard-calculation-id``) :param calc_mode: calculation_mode of the current calculation :param precalc_mode: calculation_mode of the previous calculation """ ok_mode = PRECALC_MAP[calc_mode] if calc_mode != precalc_mode and precalc_mode not in ok_mode: raise InvalidCalculationID( 'In order to run a risk calculation of kind %r, ' 'you need to provide a calculation of kind %r, ' 'but you provided a %r instead' % (calc_mode, ok_mode, precalc_mode))
[docs]class BaseCalculator(with_metaclass(abc.ABCMeta)): """ Abstract base class for all calculators. :param oqparam: OqParam object :param monitor: monitor object :param calc_id: numeric calculation ID """ from_engine = False # set by engine.run_calc sitecol = datastore.persistent_attribute('sitecol') assetcol = datastore.persistent_attribute('assetcol') performance = datastore.persistent_attribute('performance') pre_calculator = None # to be overridden is_stochastic = False # True for scenario and event based calculators @property def taxonomies(self): return self.datastore['assetcol/taxonomies'].value def __init__(self, oqparam, monitor=Monitor(), calc_id=None): self._monitor = monitor self.datastore = datastore.DataStore(calc_id) self.oqparam = oqparam
[docs] def monitor(self, operation, **kw): """ Return a new Monitor instance """ mon = self._monitor(operation, hdf5path=self.datastore.hdf5path) self._monitor.calc_id = mon.calc_id = self.datastore.calc_id vars(mon).update(kw) return mon
[docs] def save_params(self, **kw): """ Update the current calculation parameters and save engine_version """ vars(self.oqparam).update(**kw) self.datastore['oqparam'] = self.oqparam # save the updated oqparam attrs = self.datastore['/'].attrs attrs['engine_version'] = engine_version self.datastore.flush()
[docs] def set_log_format(self): """Set the format of the root logger""" fmt = '[%(asctime)s #{} %(levelname)s] %(message)s'.format( self.datastore.calc_id) for handler in logging.root.handlers: handler.setFormatter(logging.Formatter(fmt))
[docs] def run(self, pre_execute=True, concurrent_tasks=None, close=True, **kw): """ Run the calculation and return the exported outputs. """ global logversion self.close = close self.set_log_format() if logversion: # make sure this is logged only once logging.info('Running %s', self.oqparam.inputs['job_ini']) logging.info('Using engine version %s', engine_version) logversion = False if concurrent_tasks is None: # use the default pass elif concurrent_tasks == 0: # disable distribution temporarily oq_distribute = os.environ.get('OQ_DISTRIBUTE') os.environ['OQ_DISTRIBUTE'] = 'no' elif concurrent_tasks != OqParam.concurrent_tasks.default: # use the passed concurrent_tasks over the default self.oqparam.concurrent_tasks = concurrent_tasks self.save_params(**kw) exported = {} try: if pre_execute: self.pre_execute() self.result = self.execute() if self.result is not None: self.post_execute(self.result) self.before_export() exported = self.export(kw.get('exports', '')) except KeyboardInterrupt: pids = ' '.join(str(p.pid) for p in executor._processes) sys.stderr.write( 'You can manually kill the workers with kill %s\n' % pids) raise except: if kw.get('pdb'): # post-mortem debug tb = sys.exc_info()[2] traceback.print_tb(tb) pdb.post_mortem(tb) else: logging.critical('', exc_info=True) raise finally: if concurrent_tasks == 0: # restore OQ_DISTRIBUTE if oq_distribute is None: # was not set del os.environ['OQ_DISTRIBUTE'] else: os.environ['OQ_DISTRIBUTE'] = oq_distribute return exported
[docs] def core_task(*args): """ Core routine running on the workers. """ raise NotImplementedError
@abc.abstractmethod
[docs] def pre_execute(self): """ Initialization phase. """
@abc.abstractmethod
[docs] def execute(self): """ Execution phase. Usually will run in parallel the core function and return a dictionary with the results. """
@abc.abstractmethod
[docs] def post_execute(self, result): """ Post-processing phase of the aggregated output. It must be overridden with the export code. It will return a dictionary of output files. """
[docs] def export(self, exports=None): """ Export all the outputs in the datastore in the given export formats. Individual outputs are not exported if there are multiple realizations. :returns: dictionary output_key -> sorted list of exported paths """ num_rlzs = len(self.datastore['realizations']) exported = {} if isinstance(exports, tuple): fmts = exports elif exports: # is a string fmts = exports.split(',') elif isinstance(self.oqparam.exports, tuple): fmts = self.oqparam.exports else: # is a string fmts = self.oqparam.exports.split(',') keys = set(self.datastore) has_hcurves = 'hcurves' in self.datastore or 'poes' in self.datastore if has_hcurves: keys.add('hcurves') for fmt in fmts: if not fmt: continue for key in sorted(keys): # top level keys if 'rlzs' in key and num_rlzs > 1: continue # skip individual curves self._export((key, fmt), exported) if has_hcurves and self.oqparam.hazard_maps: self._export(('hmaps', fmt), exported) if has_hcurves and self.oqparam.uniform_hazard_spectra: self._export(('uhs', fmt), exported) if self.close: # in the engine we close later self.result = None try: self.datastore.close() except (RuntimeError, ValueError): # sometimes produces errors but they are difficult to # reproduce logging.warn('', exc_info=True) return exported
def _export(self, ekey, exported): if ekey in exp: with self.monitor('export'): exported[ekey] = exp(ekey, self.datastore) logging.info('exported %s: %s', ekey[0], exported[ekey])
[docs] def before_export(self): """ Collect the realizations and set the attributes nbytes """ sm_by_rlz = self.datastore['csm_info'].get_sm_by_rlz( self.rlzs_assoc.realizations) or collections.defaultdict( lambda: 'NA') self.datastore['realizations'] = numpy.array( [(r.uid, sm_by_rlz[r], gsim_names(r), r.weight) for r in self.rlzs_assoc.realizations], rlz_dt) if 'hcurves' in set(self.datastore): self.datastore.set_nbytes('hcurves') self.datastore.flush()
[docs]def check_time_event(oqparam, time_events): """ Check the `time_event` parameter in the datastore, by comparing with the periods found in the exposure. """ time_event = oqparam.time_event if time_event and time_event not in time_events: raise ValueError( 'time_event is %s in %s, but the exposure contains %s' % (time_event, oqparam.inputs['job_ini'], ', '.join(time_events)))
[docs]class HazardCalculator(BaseCalculator): """ Base class for hazard calculators based on source models """
[docs] def assoc_assets_sites(self, sitecol): """ :param sitecol: a sequence of sites :returns: a pair (filtered sites, asset collection) The new site collection is different from the original one if some assets were discarded or if there were missing assets for some sites. """ maximum_distance = self.oqparam.asset_hazard_distance siteobjects = geo.utils.GeographicObjects( Site(sid, lon, lat) for sid, lon, lat in zip(sitecol.sids, sitecol.lons, sitecol.lats)) assets_by_sid = general.AccumDict() for assets in self.assetcol.assets_by_site(): if len(assets): lon, lat = assets[0].location site, _ = siteobjects.get_closest(lon, lat, maximum_distance) if site: assets_by_sid += {site.sid: list(assets)} if not assets_by_sid: raise AssetSiteAssociationError( 'Could not associate any site to any assets within the ' 'maximum distance of %s km' % maximum_distance) mask = numpy.array([sid in assets_by_sid for sid in sitecol.sids]) assets_by_site = [assets_by_sid.get(sid, []) for sid in sitecol.sids] return sitecol.filter(mask), riskinput.AssetCollection( assets_by_site, self.exposure.cost_calculator, self.oqparam.time_event, time_events=hdf5.array_of_vstr( sorted(self.exposure.time_events)))
[docs] def count_assets(self): """ Count how many assets are taken into consideration by the calculator """ return len(self.assetcol)
[docs] def compute_previous(self): precalc = calculators[self.pre_calculator]( self.oqparam, self.monitor('precalculator'), self.datastore.calc_id) precalc.run(close=False) if 'scenario' not in self.oqparam.calculation_mode: self.csm = precalc.csm pre_attrs = vars(precalc) for name in ('riskmodel', 'assets_by_site'): if name in pre_attrs: setattr(self, name, getattr(precalc, name)) return precalc
[docs] def read_previous(self, precalc_id): parent = datastore.read(precalc_id) check_precalc_consistency( self.oqparam.calculation_mode, parent['oqparam'].calculation_mode) self.datastore.parent = parent # copy missing parameters from the parent params = {name: value for name, value in vars(parent['oqparam']).items() if name not in vars(self.oqparam)} self.save_params(**params) self.read_risk_data()
[docs] def basic_pre_execute(self): oq = self.oqparam self.read_risk_data() if 'source' in oq.inputs: wakeup_pool() # fork before reading the source model if oq.hazard_calculation_id: # already stored csm logging.info('Reusing composite source model of calc #%d', oq.hazard_calculation_id) with datastore.read(oq.hazard_calculation_id) as dstore: csm = dstore['composite_source_model'] else: csm = self.read_csm() logging.info('Prefiltering the CompositeSourceModel') with self.monitor('prefiltering source model', autoflush=True, measuremem=True): self.src_filter = SourceFilter( self.sitecol, oq.maximum_distance) self.csm = csm.filter(self.src_filter) csm.info.gsim_lt.check_imts(oq.imtls) self.datastore['csm_info'] = self.csm.info self.rup_data = {} self.init()
[docs] def read_csm(self): with self.monitor('reading composite source model', autoflush=True): csm = readinput.get_composite_source_model(self.oqparam) if self.is_stochastic: # initialize the rupture serial numbers before the # filtering; in this way the serials are independent # from the site collection; this is ultra-fast csm.init_serials() return csm
[docs] def pre_execute(self): """ Check if there is a pre_calculator or a previous calculation ID. If yes, read the inputs by invoking the precalculator or by retrieving the previous calculation; if not, read the inputs directly. """ precalc_id = self.oqparam.hazard_calculation_id job_info = {} if self.pre_calculator is not None: # the parameter hazard_calculation_id is only meaningful if # there is a precalculator self.precalc = (self.compute_previous() if precalc_id is None else self.read_previous(precalc_id)) self.init() else: # we are in a basic calculator self.precalc = None self.basic_pre_execute() if 'source' in self.oqparam.inputs: job_info.update(readinput.get_job_info( self.oqparam, self.csm, self.sitecol)) if hasattr(self, 'riskmodel'): job_info['require_epsilons'] = bool(self.riskmodel.covs) self._monitor.save_info(job_info) self.param = {} # used in the risk calculators
[docs] def init(self): """ To be overridden to initialize the datasets needed by the calculation """ if not self.oqparam.imtls: raise ValueError('Missing intensity_measure_types!') if self.precalc: self.rlzs_assoc = self.precalc.rlzs_assoc elif 'csm_info' in self.datastore: self.rlzs_assoc = self.datastore['csm_info'].get_rlzs_assoc() else: # build a fake; used by risk-from-file calculators self.datastore['csm_info'] = fake = source.CompositionInfo.fake() self.rlzs_assoc = fake.get_rlzs_assoc()
[docs] def read_exposure(self): """ Read the exposure, the riskmodel and update the attributes .exposure, .sitecol, .assets_by_site, .taxonomies. """ logging.info('Reading the exposure') with self.monitor('reading exposure', autoflush=True): self.exposure = readinput.get_exposure(self.oqparam) self.sitecol, self.assetcol = ( readinput.get_sitecol_assetcol(self.oqparam, self.exposure)) # NB: using hdf5.vstr would fail for large exposures; # the datastore could become corrupt, and also ultra-strange # may happen (i.e. having the sitecol saved inside asset_refs!!) arefs = numpy.array(self.exposure.asset_refs) self.datastore['asset_refs'] = arefs self.datastore.set_attrs('asset_refs', nbytes=arefs.nbytes) logging.info('Read %d assets on %d sites', len(self.assetcol), len(self.sitecol))
[docs] def get_min_iml(self, oq): # set the minimum_intensity if hasattr(self, 'riskmodel') and not oq.minimum_intensity: # infer it from the risk models if not directly set in job.ini oq.minimum_intensity = self.riskmodel.get_min_iml() min_iml = calc.fix_minimum_intensity( oq.minimum_intensity, oq.imtls) if min_iml.sum() == 0: logging.warn('The GMFs are not filtered: ' 'you may want to set a minimum_intensity') else: logging.info('minimum_intensity=%s', oq.minimum_intensity) return min_iml
[docs] def load_riskmodel(self): """ Read the risk model and set the attribute .riskmodel. The riskmodel can be empty for hazard calculations. Save the loss ratios (if any) in the datastore. """ self.riskmodel = rm = readinput.get_risk_model(self.oqparam) if not self.riskmodel: # can happen only in a hazard calculation return self.save_params() # re-save oqparam # save the risk models and loss_ratios in the datastore self.datastore['composite_risk_model'] = rm attrs = self.datastore.getitem('composite_risk_model').attrs attrs['min_iml'] = hdf5.array_of_vstr(sorted(rm.get_min_iml().items())) if rm.damage_states: attrs['damage_states'] = hdf5.array_of_vstr(rm.damage_states) self.datastore['loss_ratios'] = rm.get_loss_ratios() self.datastore.set_nbytes('composite_risk_model') self.datastore.set_nbytes('loss_ratios') self.datastore.hdf5.flush()
[docs] def read_risk_data(self): """ Read the exposure (if any), the risk model (if any) and then the site collection, possibly extracted from the exposure. """ oq = self.oqparam with self.monitor('reading site collection', autoflush=True): haz_sitecol = readinput.get_site_collection(oq) if haz_sitecol is not None: logging.info('Read %d hazard site(s)', len(haz_sitecol)) oq_hazard = (self.datastore.parent['oqparam'] if self.datastore.parent else None) if 'exposure' in oq.inputs: self.read_exposure() self.load_riskmodel() # must be called *after* read_exposure num_assets = self.count_assets() if self.datastore.parent: haz_sitecol = self.datastore.parent['sitecol'] if haz_sitecol is not None and haz_sitecol != self.sitecol: with self.monitor('assoc_assets_sites', autoflush=True): self.sitecol, self.assetcol = \ self.assoc_assets_sites(haz_sitecol.complete) ok_assets = self.count_assets() num_sites = len(self.sitecol) logging.warn('Associated %d assets to %d sites, %d discarded', ok_assets, num_sites, num_assets - ok_assets) elif oq.job_type == 'risk': raise RuntimeError( 'Missing exposure_file in %(job_ini)s' % oq.inputs) else: # no exposure self.load_riskmodel() self.sitecol = haz_sitecol if oq_hazard: parent = self.datastore.parent if 'assetcol' in parent: check_time_event(oq, parent['assetcol'].time_events) if oq_hazard.time_event and oq_hazard.time_event != oq.time_event: raise ValueError( 'The risk configuration file has time_event=%s but the ' 'hazard was computed with time_event=%s' % ( oq.time_event, oq_hazard.time_event)) if self.oqparam.job_type == 'risk': taxonomies = set(self.taxonomies) # check that we are covering all the taxonomies in the exposure missing = taxonomies - set(self.riskmodel.taxonomies) if self.riskmodel and missing: raise RuntimeError('The exposure contains the taxonomies %s ' 'which are not in the risk model' % missing) # same check for the consequence models, if any consequence_models = riskmodels.get_risk_models( self.oqparam, 'consequence') for lt, cm in consequence_models.items(): missing = taxonomies - set(cm) if missing: raise ValueError( 'Missing consequenceFunctions for %s' % ' '.join(missing))
[docs] def post_process(self): """For compatibility with the engine"""
[docs]class RiskCalculator(HazardCalculator): """ Base class for all risk calculators. A risk calculator must set the attributes .riskmodel, .sitecol, .assets_by_site, .exposure .riskinputs in the pre_execute phase. """
[docs] def check_poes(self, curves_by_trt_gsim): """Overridden in ClassicalDamage"""
[docs] def make_eps(self, num_ruptures): """ :param num_ruptures: the size of the epsilon array for each asset """ oq = self.oqparam with self.monitor('building epsilons', autoflush=True): return riskinput.make_eps( self.assetcol, num_ruptures, oq.master_seed, oq.asset_correlation)
[docs] def build_riskinputs(self, kind, hazards_by_rlz, eps=numpy.zeros(0)): """ :param kind: kind of hazard getter, can be 'poe' or 'gmf' :param hazards_by_rlz: a dictionary rlz -> IMT -> array of length num_sites :param eps: a matrix of epsilons (possibly empty) :returns: a list of RiskInputs objects, sorted by IMT. """ self.check_poes(hazards_by_rlz) imtls = self.oqparam.imtls if not set(self.oqparam.risk_imtls) & set(imtls): rsk = ', '.join(self.oqparam.risk_imtls) haz = ', '.join(imtls) raise ValueError('The IMTs in the risk models (%s) are disjoint ' "from the IMTs in the hazard (%s)" % (rsk, haz)) num_tasks = self.oqparam.concurrent_tasks or 1 rlzs = sorted(hazards_by_rlz) assets_by_site = self.assetcol.assets_by_site() with self.monitor('building riskinputs', autoflush=True): riskinputs = [] idx_weight_pairs = [ (i, len(assets)) for i, assets in enumerate(assets_by_site)] blocks = general.split_in_blocks( idx_weight_pairs, num_tasks, weight=operator.itemgetter(1)) for block in blocks: indices = numpy.array([idx for idx, _weight in block]) reduced_assets = assets_by_site[indices] # dictionary of epsilons for the reduced assets reduced_eps = collections.defaultdict(F32) if len(eps): for assets in reduced_assets: for asset in assets: reduced_eps[asset.ordinal] = eps[asset.ordinal] # build the riskinputs ri = riskinput.RiskInput( riskinput.HazardGetter( kind, 0, {None: rlzs}, hazards_by_rlz, indices, list(imtls)), reduced_assets, reduced_eps) if ri.weight > 0: riskinputs.append(ri) assert riskinputs logging.info('Built %d risk inputs', len(riskinputs)) return riskinputs
[docs] def execute(self): """ Parallelize on the riskinputs and returns a dictionary of results. Require a `.core_task` to be defined with signature (riskinputs, riskmodel, rlzs_assoc, monitor). """ rlz_ids = getattr(self.oqparam, 'rlz_ids', ()) if rlz_ids: self.rlzs_assoc = self.rlzs_assoc.extract(rlz_ids) mon = self.monitor('risk') all_args = [(riskinput, self.riskmodel, self.param, mon) for riskinput in self.riskinputs] res = Starmap(self.core_task.__func__, all_args).reduce(self.combine) return res
[docs] def combine(self, acc, res): return acc + res