openquake.calculators package¶
Subpackages¶
base module¶
-
class
openquake.calculators.base.
BaseCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
object
Abstract base class for all calculators.
Parameters: - oqparam – OqParam object
- monitor – monitor object
- calc_id – numeric calculation ID
-
execute
()[source]¶ Execution phase. Usually will run in parallel the core function and return a dictionary with the results.
-
export
(exports=None)[source]¶ Export all the outputs in the datastore in the given export formats. Individual outputs are not exported if there are multiple realizations.
-
from_engine
= False¶
-
is_stochastic
= False¶
-
performance
¶
-
post_execute
(result)[source]¶ Post-processing phase of the aggregated output. It must be overridden with the export code. It will return a dictionary of output files.
-
pre_calculator
= None¶
-
run
(pre_execute=True, concurrent_tasks=None, close=True, **kw)[source]¶ Run the calculation and return the exported outputs.
-
sitecol
¶
-
class
openquake.calculators.base.
HazardCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.base.BaseCalculator
Base class for hazard calculators based on source models
-
can_read_parent
()[source]¶ Returns: the parent datastore if it is present and can be read from the workers, None otherwise
-
count_eff_ruptures
(result_dict, src_group_id)[source]¶ Returns the number of ruptures in the src_group (after filtering) or 0 if the src_group has been filtered away.
Parameters: - result_dict – a dictionary with keys (grp_id, gsim)
- src_group_id – the source group ID
-
load_riskmodel
()[source]¶ Read the risk model and set the attribute .riskmodel. The riskmodel can be empty for hazard calculations. Save the loss ratios (if any) in the datastore.
-
pre_execute
()[source]¶ Check if there is a pre_calculator or a previous calculation ID. If yes, read the inputs by invoking the precalculator or by retrieving the previous calculation; if not, read the inputs directly.
-
precalc
= None¶
-
read_exposure
(haz_sitecol=None)[source]¶ Read the exposure, the riskmodel and update the attributes .sitecol, .assetcol
-
read_previous
(precalc_id)[source]¶ Read the previous calculation datastore by checking the consistency of the calculation_mode, then read the risk data.
-
-
exception
openquake.calculators.base.
InvalidCalculationID
[source]¶ Bases:
Exception
Raised when running a post-calculation on top of an incompatible pre-calculation
-
class
openquake.calculators.base.
RiskCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.base.HazardCalculator
Base class for all risk calculators. A risk calculator must set the attributes .riskmodel, .sitecol, .assetcol, .riskinputs in the pre_execute phase.
-
build_riskinputs
(kind, eps=None, num_events=0)[source]¶ Parameters: - kind – kind of hazard getter, can be ‘poe’ or ‘gmf’
- eps – a matrix of epsilons (or None)
- num_events – how many events there are
Returns: a list of RiskInputs objects, sorted by IMT.
-
-
openquake.calculators.base.
check_precalc_consistency
(calc_mode, precalc_mode)[source]¶ Defensive programming against users providing an incorrect pre-calculation ID (with
--hazard-calculation-id
)Parameters: - calc_mode – calculation_mode of the current calculation
- precalc_mode – calculation_mode of the previous calculation
-
openquake.calculators.base.
check_time_event
(oqparam, occupancy_periods)[source]¶ Check the time_event parameter in the datastore, by comparing with the periods found in the exposure.
-
openquake.calculators.base.
get_gmfs
(calculator)[source]¶ Parameters: calculator – a scenario_risk/damage or event_based_risk calculator Returns: a pair (eids, R) where R is the number of realizations
-
openquake.calculators.base.
get_gmv_data
(sids, gmfs)[source]¶ Convert an array of shape (R, N, E, I) into an array of type gmv_data_dt
-
openquake.calculators.base.
import_gmfs
(dstore, fname, sids)[source]¶ Import in the datastore a ground motion field CSV file.
Parameters: - dstore – the datastore
- fname – the CSV file
- sids – the site IDs (complete)
Returns: event_ids, num_rlzs
-
openquake.calculators.base.
save_gmf_data
(dstore, sitecol, gmfs)[source]¶ Parameters: - dstore – a
openquake.baselib.datastore.DataStore
instance - sitecol – a
openquake.hazardlib.site.SiteCollection
instance - gmfs – an array of shape (R, N, E, I)
- dstore – a
-
openquake.calculators.base.
set_array
(longarray, shortarray)[source]¶ Parameters: - longarray – a numpy array of floats of length L >= l
- shortarray – a numpy array of floats of length l
Fill longarray with the values of shortarray, starting from the left. If shortarry is shorter than longarray, then the remaining elements on the right are filled with numpy.nan values.
classical module¶
-
class
openquake.calculators.classical.
ClassicalCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.classical.PSHACalculator
Classical PSHA calculator
-
core_task
(pgetter, hstats, monitor)¶ Parameters: - pgetter – an
openquake.commonlib.getters.PmapGetter
- hstats – a list of pairs (statname, statfunc)
- monitor – instance of Monitor
Returns: a dictionary kind -> ProbabilityMap
The “kind” is a string of the form ‘rlz-XXX’ or ‘mean’ of ‘quantile-XXX’ used to specify the kind of output.
- pgetter – an
-
pre_calculator
= 'psha'¶
-
-
class
openquake.calculators.classical.
PSHACalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.base.HazardCalculator
Classical PSHA calculator
-
agg_dicts
(acc, pmap_by_grp)[source]¶ Aggregate dictionaries of hazard curves by updating the accumulator.
Parameters: - acc – accumulator dictionary
- pmap_by_grp – dictionary grp_id -> ProbabilityMap
-
core_task
(group, src_filter, gsims, param, monitor=<Monitor dummy>)¶ Compute the hazard curves for a set of sources belonging to the same tectonic region type for all the GSIMs associated to that TRT. The arguments are the same as in
calc_hazard_curves()
, except forgsims
, which is a list of GSIM instances.Returns: a dictionary {grp_id: pmap} with attributes .grp_ids, .calc_times, .eff_ruptures
-
execute
()[source]¶ Run in parallel core_task(sources, sitecol, monitor), by parallelizing on the sources according to their weight and tectonic region type.
-
gen_args
(monitor)[source]¶ Used in the case of large source model logic trees.
Parameters: monitor – a openquake.baselib.performance.Monitor
Yields: (sources, sites, gsims, monitor) tuples
-
-
openquake.calculators.classical.
build_hcurves_and_stats
(pgetter, hstats, monitor)[source]¶ Parameters: - pgetter – an
openquake.commonlib.getters.PmapGetter
- hstats – a list of pairs (statname, statfunc)
- monitor – instance of Monitor
Returns: a dictionary kind -> ProbabilityMap
The “kind” is a string of the form ‘rlz-XXX’ or ‘mean’ of ‘quantile-XXX’ used to specify the kind of output.
- pgetter – an
-
openquake.calculators.classical.
fix_ones
(pmap)[source]¶ Physically, an extremely small intensity measure level can have an extremely large probability of exceedence, however that probability cannot be exactly 1 unless the level is exactly 0. Numerically, the PoE can be 1 and this give issues when calculating the damage (there is a log(0) in
openquake.risklib.scientific.annual_frequency_of_exceedence
). Here we solve the issue by replacing the unphysical probabilities 1 with .9999999999999999 (the float64 closest to 1).
classical_bcr module¶
-
class
openquake.calculators.classical_bcr.
ClassicalBCRCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.classical_risk.ClassicalRiskCalculator
Classical BCR Risk calculator
-
core_task
(riskinput, riskmodel, param, monitor)¶ Compute and return the average losses for each asset.
Parameters: - riskinput – a
openquake.risklib.riskinput.RiskInput
object - riskmodel – a
openquake.risklib.riskinput.CompositeRiskModel
instance - param – dictionary of extra parameters
- monitor –
openquake.baselib.performance.Monitor
instance
- riskinput – a
-
-
openquake.calculators.classical_bcr.
classical_bcr
(riskinput, riskmodel, param, monitor)[source]¶ Compute and return the average losses for each asset.
Parameters: - riskinput – a
openquake.risklib.riskinput.RiskInput
object - riskmodel – a
openquake.risklib.riskinput.CompositeRiskModel
instance - param – dictionary of extra parameters
- monitor –
openquake.baselib.performance.Monitor
instance
- riskinput – a
classical_damage module¶
-
class
openquake.calculators.classical_damage.
ClassicalDamageCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.classical_risk.ClassicalRiskCalculator
Scenario damage calculator
-
core_task
(riskinput, riskmodel, param, monitor)¶ Core function for a classical damage computation.
Parameters: - riskinput – a
openquake.risklib.riskinput.RiskInput
object - riskmodel – a
openquake.risklib.riskinput.CompositeRiskModel
instance - param – dictionary of extra parameters
- monitor –
openquake.baselib.performance.Monitor
instance
Returns: a nested dictionary rlz_idx -> asset -> <damage array>
- riskinput – a
-
-
openquake.calculators.classical_damage.
classical_damage
(riskinput, riskmodel, param, monitor)[source]¶ Core function for a classical damage computation.
Parameters: - riskinput – a
openquake.risklib.riskinput.RiskInput
object - riskmodel – a
openquake.risklib.riskinput.CompositeRiskModel
instance - param – dictionary of extra parameters
- monitor –
openquake.baselib.performance.Monitor
instance
Returns: a nested dictionary rlz_idx -> asset -> <damage array>
- riskinput – a
classical_risk module¶
-
class
openquake.calculators.classical_risk.
ClassicalRiskCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.base.RiskCalculator
Classical Risk calculator
-
core_task
(riskinput, riskmodel, param, monitor)¶ Compute and return the average losses for each asset.
Parameters: - riskinput – a
openquake.risklib.riskinput.RiskInput
object - riskmodel – a
openquake.risklib.riskinput.CompositeRiskModel
instance - param – dictionary of extra parameters
- monitor –
openquake.baselib.performance.Monitor
instance
- riskinput – a
-
post_execute
(result)[source]¶ Saving loss curves in the datastore.
Parameters: result – aggregated result of the task classical_risk
-
pre_calculator
= 'classical'¶
-
-
openquake.calculators.classical_risk.
classical_risk
(riskinput, riskmodel, param, monitor)[source]¶ Compute and return the average losses for each asset.
Parameters: - riskinput – a
openquake.risklib.riskinput.RiskInput
object - riskmodel – a
openquake.risklib.riskinput.CompositeRiskModel
instance - param – dictionary of extra parameters
- monitor –
openquake.baselib.performance.Monitor
instance
- riskinput – a
disaggregation module¶
Disaggregation calculator core functionality
-
class
openquake.calculators.disaggregation.
DisaggregationCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.base.HazardCalculator
Classical PSHA disaggregation calculator
-
POE_TOO_BIG
= "You are trying to disaggregate for poe=%s.\nHowever the source model #%d, '%s',\nproduces at most probabilities of %.7f for rlz=#%d, IMT=%s.\nThe disaggregation PoE is too big or your model is wrong,\nproducing too small PoEs."¶
-
agg_result
(acc, result)[source]¶ Collect the results coming from compute_disagg into self.results, a dictionary with key (sid, rlzi, poe, imt, trti) and values which are probability arrays.
Parameters: - acc – dictionary k -> dic accumulating the results
- result – dictionary with the result coming from a task
-
build_disagg_by_src
(iml4)[source]¶ Parameters: - dstore – a datastore
- iml4 – 4D array of IMLs with shape (N, 1, M, P)
-
build_stats
(results, hstats)[source]¶ Parameters: - results – dict key -> 6D disagg_matrix
- hstats – (statname, statfunc) pairs
-
check_poes_disagg
(curves)[source]¶ Raise an error if the given poes_disagg are too small compared to the hazard curves.
-
full_disaggregation
(curves)[source]¶ Run the disaggregation phase.
Parameters: curves – a list of hazard curves, one per site The curves can be all None if iml_disagg is set in the job.ini
-
get_curves
(sid)[source]¶ Get all the relevant hazard curves for the given site ordinal. Returns a dictionary rlz_id -> curve_by_imt.
-
-
openquake.calculators.disaggregation.
agg_probs
(*probs)[source]¶ Aggregate probabilities withe the usual formula 1 - (1 - P1) … (1 - Pn)
-
openquake.calculators.disaggregation.
compute_disagg
(src_filter, sources, cmaker, iml4, trti, bin_edges, oqparam, monitor)[source]¶ Parameters: - src_filter – a
openquake.hazardlib.calc.filter.SourceFilter
instance - sources – list of hazardlib source objects
- cmaker – a
openquake.hazardlib.gsim.base.ContextMaker
instance - iml4 – an array of intensities of shape (N, R, M, P)
- trti (dict) – tectonic region type index
- bin_egdes – a dictionary site_id -> edges
- oqparam – the parameters in the job.ini file
- monitor – monitor of the currently running job
Returns: a dictionary of probability arrays, with composite key (sid, rlzi, poe, imt, iml, trti).
- src_filter – a
event_based module¶
-
class
openquake.calculators.event_based.
EventBasedCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.base.HazardCalculator
Event based PSHA calculator generating the ground motion fields and the hazard curves from the ruptures, depending on the configuration parameters.
-
combine_pmaps_and_save_gmfs
(acc, results)[source]¶ Combine the hazard curves (if any) and save the gmfs (if any) sequentially; notice that the gmfs may come from different tasks in any order.
Parameters: - acc – an accumulator for the hazard curves
- results – dictionaries rlzi, imt -> [gmf_array, curves_by_imt]
Returns: a new accumulator
-
core_task
(getters, oq, monitor)¶ Parameters: - getters – a list of GmfGetter instances
- oq – an OqParam instance
- monitor – a Monitor instance
Returns: a list of dictionaries with keys gmfcoll and hcurves
-
execute
()[source]¶ Run in parallel core_task(sources, sitecol, monitor), by parallelizing on the ruptures according to their weight and tectonic region type.
-
is_stochastic
= True¶
-
post_execute
(result)[source]¶ Parameters: result – a dictionary (src_group_id, gsim) -> haz_curves or an empty dictionary if hazard_curves_from_gmfs is false
-
pre_calculator
= 'event_based_rupture'¶
-
-
class
openquake.calculators.event_based.
EventBasedRuptureCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.base.HazardCalculator
Event based PSHA calculator generating the ruptures only
-
agg_dicts
(acc, ruptures_by_grp_id)[source]¶ Accumulate dictionaries of ruptures and populate the events dataset in the datastore.
Parameters: - acc – accumulator dictionary
- ruptures_by_grp_id – a nested dictionary grp_id -> ruptures
-
core_task
(sources, src_filter, gsims, param, monitor)¶ Parameters: - sources – a sequence of sources of the same group
- src_filter – a source site filter
- gsims – a list of GSIMs for the current tectonic region model
- param – a dictionary of additional parameters
- monitor – monitor instance
Returns: a dictionary src_group_id -> [Rupture instances]
-
gen_args
(csm, monitor)[source]¶ Used in the case of large source model logic trees.
Parameters: - monitor – a
openquake.baselib.performance.Monitor
- csm – a reduced CompositeSourceModel
Yields: (sources, sites, gsims, monitor) tuples
- monitor – a
-
init
()[source]¶ Set the random seed passed to the SourceManager and the minimum_intensity dictionary.
-
is_stochastic
= True¶
-
-
openquake.calculators.event_based.
compute_gmfs_and_curves
(getters, oq, monitor)[source]¶ Parameters: - getters – a list of GmfGetter instances
- oq – an OqParam instance
- monitor – a Monitor instance
Returns: a list of dictionaries with keys gmfcoll and hcurves
-
openquake.calculators.event_based.
compute_ruptures
(sources, src_filter, gsims, param, monitor)[source]¶ Parameters: - sources – a sequence of sources of the same group
- src_filter – a source site filter
- gsims – a list of GSIMs for the current tectonic region model
- param – a dictionary of additional parameters
- monitor – monitor instance
Returns: a dictionary src_group_id -> [Rupture instances]
-
openquake.calculators.event_based.
get_events
(ebruptures)[source]¶ Extract an array of dtype stored_event_dt from a list of EBRuptures
-
openquake.calculators.event_based.
get_mean_curves
(dstore)[source]¶ Extract the mean hazard curves from the datastore, as a composite array of length nsites.
-
openquake.calculators.event_based.
save_gmdata
(calc, n_rlzs)[source]¶ Save a composite array gmdata in the datastore.
Parameters: - calc – a calculator with a dictionary .gmdata {rlz: data}
- n_rlzs – the total number of realizations
-
openquake.calculators.event_based.
set_counts
(dstore, dsetname)[source]¶ Parameters: dstore – a DataStore instance Dsetname: name of dataset with a field grp_id Returns: a dictionary grp_id > counts
event_based_risk module¶
-
class
openquake.calculators.event_based_risk.
EbriskCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.base.RiskCalculator
Event based PSHA calculator generating the total losses by taxonomy
-
core_task
(riskinput, riskmodel, param, monitor)¶ Parameters: - riskinput – a
openquake.risklib.riskinput.RiskInput
object - riskmodel – a
openquake.risklib.riskinput.CompositeRiskModel
instance - param – a dictionary of parameters
- monitor –
openquake.baselib.performance.Monitor
instance
Returns: a dictionary of numpy arrays of shape (L, R)
- riskinput – a
-
gen_args
()[source]¶ Yield the arguments required by build_ruptures, i.e. the source models, the asset collection, the riskmodel and others.
-
is_stochastic
= True¶
-
pre_calculator
= 'event_based_rupture'¶
-
save_losses
(dic, offset=0)[source]¶ Save the event loss tables incrementally.
Parameters: - dic – dictionary with agglosses, assratios, avglosses, lrs_idx
- offset – realization offset
-
save_results
(allres, num_rlzs)[source]¶ Parameters: - allres – an iterable of result iterators
- num_rlzs – the total number of realizations
Returns: the total number of events
-
start_tasks
(sm_id, sitecol, assetcol, riskmodel, imtls, trunc_level, correl_model, min_iml)[source]¶ Parameters: - sm_id – source model ordinal
- sitecol – a SiteCollection instance
- assetcol – an AssetCollection instance
- riskmodel – a RiskModel instance
- imtls – Intensity Measure Types and Levels
- trunc_level – truncation level
- correl_model – correlation model
- min_iml – vector of minimum intensities, one per IMT
Returns: an IterResult instance
-
-
openquake.calculators.event_based_risk.
build_curves_maps
(avalues, builder, lrgetter, stats, clp, monitor)[source]¶ Build loss curves and optionally maps if conditional_loss_poes are set.
-
openquake.calculators.event_based_risk.
build_rup_loss_table
(dstore)[source]¶ Save the total losses by rupture.
-
openquake.calculators.event_based_risk.
event_based_risk
(riskinput, riskmodel, param, monitor)[source]¶ Parameters: - riskinput – a
openquake.risklib.riskinput.RiskInput
object - riskmodel – a
openquake.risklib.riskinput.CompositeRiskModel
instance - param – a dictionary of parameters
- monitor –
openquake.baselib.performance.Monitor
instance
Returns: a dictionary of numpy arrays of shape (L, R)
- riskinput – a
reportwriter module¶
Utilities to build a report writer generating a .rst report for a calculation
-
class
openquake.calculators.reportwriter.
ReportWriter
(dstore)[source]¶ Bases:
object
A particularly smart view over the datastore
-
title
= {'csm_info': 'Composite source model', 'ruptures_per_trt': 'Number of ruptures per tectonic region type', 'avglosses_data_transfer': 'Estimated data transfer for the avglosses', 'biggest_ebr_gmf': 'Maximum memory allocated for the GMFs', 'exposure_info': 'Exposure model', 'task_classical:0': 'Fastest task', 'dupl_sources': 'Duplicated sources', 'params': 'Parameters', 'required_params_per_trt': 'Required parameters per tectonic region type', 'task_info': 'Information about the tasks', 'times_by_source_class': 'Computation times by source typology', 'inputs': 'Input files', 'task_classical:-1': 'Slowest task', 'short_source_info': 'Slowest sources', 'job_info': 'Informational data', 'rlzs_assoc': 'Realizations per (TRT, GSIM)', 'ruptures_events': 'Specific information for event based', 'performance': 'Slowest operations'}¶
-
-
openquake.calculators.reportwriter.
build_report
(job_ini, output_dir=None)[source]¶ Write a report.csv file with information about the calculation without running it
Parameters: - job_ini – full pathname of the job.ini file
- output_dir – the directory where the report is written (default the input directory)
-
openquake.calculators.reportwriter.
count_ruptures
(sources, srcfilter, gsims, param, monitor)[source]¶ Count the number of ruptures contained in the given sources by applying a raw source filtering on the integration distance. Return a dictionary src_group_id -> {}. All sources must belong to the same tectonic region type.
scenario module¶
-
class
openquake.calculators.scenario.
ScenarioCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.base.HazardCalculator
Scenario hazard calculator
-
is_stochastic
= True¶
-
scenario_damage module¶
-
class
openquake.calculators.scenario_damage.
ScenarioDamageCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.base.RiskCalculator
Scenario damage calculator
-
core_task
(riskinput, riskmodel, param, monitor)¶ Core function for a damage computation.
Parameters: - riskinput – a
openquake.risklib.riskinput.RiskInput
object - riskmodel – a
openquake.risklib.riskinput.CompositeRiskModel
instance - monitor –
openquake.baselib.performance.Monitor
instance - param – dictionary of extra parameters
Returns: - a dictionary {‘d_asset’: [(l, r, a, mean-stddev), …],
’d_tag’: damage array of shape T, R, L, E, D, ‘c_asset’: [(l, r, a, mean-stddev), …], ‘c_tag’: damage array of shape T, R, L, E}
d_asset and d_tag are related to the damage distributions whereas c_asset and c_tag are the consequence distributions. If there is no consequence model c_asset is an empty list and c_tag is a zero-valued array.
- riskinput – a
-
is_stochastic
= True¶
-
post_execute
(result)[source]¶ Compute stats for the aggregated distributions and save the results on the datastore.
-
pre_calculator
= 'scenario'¶
-
-
openquake.calculators.scenario_damage.
dist_by_asset
(data, multi_stat_dt, number)[source]¶ Parameters: - data – array of shape (N, R, L, 2, …)
- multi_stat_dt – numpy dtype for statistical outputs
- number – expected number of units per asset
Returns: array of shape (N, R) with records of type multi_stat_dt
-
openquake.calculators.scenario_damage.
scenario_damage
(riskinput, riskmodel, param, monitor)[source]¶ Core function for a damage computation.
Parameters: - riskinput – a
openquake.risklib.riskinput.RiskInput
object - riskmodel – a
openquake.risklib.riskinput.CompositeRiskModel
instance - monitor –
openquake.baselib.performance.Monitor
instance - param – dictionary of extra parameters
Returns: - a dictionary {‘d_asset’: [(l, r, a, mean-stddev), …],
’d_tag’: damage array of shape T, R, L, E, D, ‘c_asset’: [(l, r, a, mean-stddev), …], ‘c_tag’: damage array of shape T, R, L, E}
d_asset and d_tag are related to the damage distributions whereas c_asset and c_tag are the consequence distributions. If there is no consequence model c_asset is an empty list and c_tag is a zero-valued array.
- riskinput – a
scenario_risk module¶
-
class
openquake.calculators.scenario_risk.
ScenarioRiskCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.base.RiskCalculator
Run a scenario risk calculation
-
core_task
(riskinput, riskmodel, param, monitor)¶ Core function for a scenario computation.
Parameters: - riskinput – a of
openquake.risklib.riskinput.RiskInput
object - riskmodel – a
openquake.risklib.riskinput.CompositeRiskModel
instance - param – dictionary of extra parameters
- monitor –
openquake.baselib.performance.Monitor
instance
Returns: a dictionary { ‘agg’: array of shape (E, L, R, 2), ‘avg’: list of tuples (lt_idx, rlz_idx, asset_ordinal, statistics) } where E is the number of simulated events, L the number of loss types, R the number of realizations and statistics is an array of shape (n, R, 4), with n the number of assets in the current riskinput object
- riskinput – a of
-
is_stochastic
= True¶
-
post_execute
(result)[source]¶ Compute stats for the aggregated distributions and save the results on the datastore.
-
pre_calculator
= 'scenario'¶
-
-
openquake.calculators.scenario_risk.
scenario_risk
(riskinput, riskmodel, param, monitor)[source]¶ Core function for a scenario computation.
Parameters: - riskinput – a of
openquake.risklib.riskinput.RiskInput
object - riskmodel – a
openquake.risklib.riskinput.CompositeRiskModel
instance - param – dictionary of extra parameters
- monitor –
openquake.baselib.performance.Monitor
instance
Returns: a dictionary { ‘agg’: array of shape (E, L, R, 2), ‘avg’: list of tuples (lt_idx, rlz_idx, asset_ordinal, statistics) } where E is the number of simulated events, L the number of loss types, R the number of realizations and statistics is an array of shape (n, R, 4), with n the number of assets in the current riskinput object
- riskinput – a of
ucerf_event_classical module¶
-
class
openquake.calculators.ucerf_classical.
UCERFClassicalCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.classical.ClassicalCalculator
-
pre_calculator
= 'ucerf_psha'¶
-
-
class
openquake.calculators.ucerf_classical.
UcerfPSHACalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.classical.PSHACalculator
UCERF classical calculator.
-
core_task
(rupset_idx, ucerf_source, src_filter, gsims, monitor)¶ Parameters: - rupset_idx – indices of the rupture sets
- ucerf_source – an object taking the place of a source for UCERF
- src_filter – a source filter returning the sites affected by the source
- gsims – a list of GSIMs
- monitor – a monitor instance
Returns: a ProbabilityMap
-
execute
()[source]¶ Run in parallel core_task(sources, sitecol, monitor), by parallelizing on the sources according to their weight and tectonic region type.
-
is_stochastic
= False¶
-
-
openquake.calculators.ucerf_classical.
convert_UCERFSource
(self, node)[source]¶ Converts the Ucerf Source node into an SES Control object
-
openquake.calculators.ucerf_classical.
ucerf_classical
(rupset_idx, ucerf_source, src_filter, gsims, monitor)[source]¶ Parameters: - rupset_idx – indices of the rupture sets
- ucerf_source – an object taking the place of a source for UCERF
- src_filter – a source filter returning the sites affected by the source
- gsims – a list of GSIMs
- monitor – a monitor instance
Returns: a ProbabilityMap
ucerf_event_based module¶
-
class
openquake.calculators.ucerf_event_based.
ImperfectPlanarSurface
(mesh_spacing, strike, dip, top_left, top_right, bottom_right, bottom_left)[source]¶ Bases:
openquake.hazardlib.geo.surface.planar.PlanarSurface
The planar surface class sets a narrow tolerance for the rectangular plane to be distorted in cartesian space. Ruptures with aspect ratios << 1.0, and with a dip of less than 90 degrees, cannot be generated in a manner that is consistent with the definitions - and thus cannot be instantiated. This subclass modifies the original planar surface class such that the tolerance checks are over-ridden. We find that distance errors with respect to a simple fault surface with a mesh spacing of 0.001 km are only on the order of < 0.15 % for Rrup (< 2 % for Rjb, < 3.0E-5 % for Rx)
-
IMPERFECT_RECTANGLE_TOLERANCE
= inf¶
-
-
class
openquake.calculators.ucerf_event_based.
List
[source]¶ Bases:
list
Trivial container returned by compute_losses
-
class
openquake.calculators.ucerf_event_based.
UCERFHazardCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.event_based.EventBasedCalculator
Runs a standard event based calculation starting from UCERF ruptures
-
pre_calculator
= 'ucerf_rupture'¶
-
-
class
openquake.calculators.ucerf_event_based.
UCERFRiskCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.event_based_risk.EbriskCalculator
Event based risk calculator for UCERF, parallelizing on the source models
-
gen_args
()[source]¶ Yield the arguments required by build_ruptures, i.e. the source models, the asset collection, the riskmodel and others.
-
pre_execute
()¶ parse the logic tree and source model input
-
-
class
openquake.calculators.ucerf_event_based.
UCERFRuptureCalculator
(oqparam, monitor=<Monitor dummy>, calc_id=None)[source]¶ Bases:
openquake.calculators.event_based.EventBasedRuptureCalculator
Event based PSHA calculator generating the ruptures only
-
core_task
(sources, src_filter, gsims, param, monitor)¶ Parameters: - sources – a list with a single UCERF source
- src_filter – a SourceFilter instance
- gsims – a list of GSIMs
- param – extra parameters
- monitor – a Monitor instance
Returns: an AccumDict grp_id -> EBRuptures
-
-
class
openquake.calculators.ucerf_event_based.
UCERFSource
(source_file, id, investigation_time, start_date, min_mag, npd=<openquake.hazardlib.pmf.PMF object>, hdd=<openquake.hazardlib.pmf.PMF object>, aspect=1.5, upper_seismogenic_depth=0.0, lower_seismogenic_depth=15.0, msr=<WC1994>, mesh_spacing=1.0, trt='Active Shallow Crust', integration_distance=1000)[source]¶ Bases:
object
Parameters: - source_file – Path to an existing HDF5 file containing the UCERF model
- id (str) – Valid branch of UCERF
- investigation_time (float) – Investigation time of event set (years)
- start_date – Starting date of the investigation (None for time independent)
- min_mag (float) – Minimim magnitude for consideration of background sources
- npd – Nodal plane distribution as instance of :class: openquake.hazardlib.pmf.PMF
- hdd – Hypocentral depth distribution as instance of :class: openquake.hazardlib.pmf.PMF
- aspect (float) – Aspect ratio
- upper_seismoge nic_depth (float) – Upper seismogenic depth (km)
- lower_seismogenic_depth (float) – Lower seismogenic depth (km)
- msr – Magnitude scaling relation
- mesh_spacing (float) – Spacing (km) of fault mesh
- trt (str) – Tectonic region type
- integration_distance (float) – Maximum distance from rupture to site for consideration
-
generate_event_set
(background_sids, src_filter, seed)[source]¶ Generates the event set corresponding to a particular branch
-
get_background_sids
(src_filter)[source]¶ We can apply the filtering of the background sites as a pre-processing step - this is done here rather than in the sampling of the ruptures themselves
-
get_background_sources
(src_filter)[source]¶ Turn the background model of a given branch into a set of point sources
Parameters: src_filter – SourceFilter instance
-
get_rupture_sites
(ridx, src_filter, mag)[source]¶ Determines if a rupture is likely to be inside the integration distance by considering the set of fault plane centroids and returns the affected sites if any.
Parameters: - ridx – List of indices composing the rupture sections
- src_filter – SourceFilter instance
- mag – Magnitude of the rupture for consideration
Returns: The sites affected by the rupture (or None)
-
get_ucerf_rupture
(iloc, src_filter)[source]¶ Parameters: - iloc – Location of the rupture plane in the hdf5 file
- src_filter – Sites for consideration and maximum distance
-
new
(grp_id, branch_id)[source]¶ Parameters: - grp_id – ordinal of the source group
- branch_name – name of the UCERF branch
- branch_id – string associated to the branch
Returns: a new UCERFSource associated to the branch_id
-
tectonic_region_type
= 'Active Shallow Crust'¶
-
weight
¶ Weight of the source, equal to the number of ruptures contained
-
openquake.calculators.ucerf_event_based.
build_idx_set
(branch_id, start_date)[source]¶ Builds a dictionary of keys based on the branch code
-
openquake.calculators.ucerf_event_based.
compute_losses
(ssm, src_filter, param, riskmodel, imts, trunc_level, correl_model, min_iml, monitor)[source]¶ Compute the losses for a single source model. Returns the ruptures as an attribute .ruptures_by_grp of the list of losses.
Parameters: - ssm – CompositeSourceModel containing a single source model
- sitecol – a SiteCollection instance
- param – a dictionary of parameters
- riskmodel – a RiskModel instance
- imts – a list of Intensity Measure Types
- trunc_level – truncation level
- correl_model – correlation model
- min_iml – vector of minimum intensities, one per IMT
- monitor – a Monitor instance
Returns: a List containing the losses by taxonomy and some attributes
-
openquake.calculators.ucerf_event_based.
compute_ruptures
(sources, src_filter, gsims, param, monitor)[source]¶ Parameters: - sources – a list with a single UCERF source
- src_filter – a SourceFilter instance
- gsims – a list of GSIMs
- param – extra parameters
- monitor – a Monitor instance
Returns: an AccumDict grp_id -> EBRuptures
-
openquake.calculators.ucerf_event_based.
generate_background_ruptures
(tom, locations, occurrence, mag, npd, hdd, upper_seismogenic_depth, lower_seismogenic_depth, msr=<WC1994>, aspect=1.5, trt='Active Shallow Crust')[source]¶ Parameters: - tom – Temporal occurrence model as instance of :class: openquake.hazardlib.tom.TOM
- locations (numpy.ndarray) – Array of locations [Longitude, Latitude] of the point sources
- occurrence (numpy.ndarray) – Annual rates of occurrence
- mag (float) – Magnitude
- npd – Nodal plane distribution as instance of :class: openquake.hazardlib.pmf.PMF
- hdd – Hypocentral depth distribution as instance of :class: openquake.hazardlib.pmf.PMF
- upper_seismogenic_depth (float) – Upper seismogenic depth (km)
- lower_seismogenic_depth (float) – Lower seismogenic depth (km)
- msr – Magnitude scaling relation
- aspect (float) – Aspect ratio
- trt (str) – Tectonic region type
Returns: List of ruptures
-
openquake.calculators.ucerf_event_based.
get_composite_source_model
(oq)[source]¶ Parameters: oq – openquake.commonlib.oqvalidation.OqParam
instanceReturns: a class:`openquake.commonlib.source.CompositeSourceModel
-
openquake.calculators.ucerf_event_based.
get_rupture_dimensions
(mag, nodal_plane, msr, rupture_aspect_ratio, upper_seismogenic_depth, lower_seismogenic_depth)[source]¶ Calculate and return the rupture length and width for given magnitude
mag
and nodal plane.Parameters: nodal_plane – Instance of openquake.hazardlib.geo.nodalplane.NodalPlane
.Returns: Tuple of two items: rupture length in width in km. The rupture area is calculated using method
get_median_area()
of source’s magnitude-scaling relationship. In any case the returned dimensions multiplication is equal to that value. Than the area is decomposed to length and width with respect to source’s rupture aspect ratio.If calculated rupture width being inclined by nodal plane’s dip angle would not fit in between upper and lower seismogenic depth, the rupture width is shrunken to a maximum possible and rupture length is extended to preserve the same area.
-
openquake.calculators.ucerf_event_based.
get_rupture_surface
(mag, nodal_plane, hypocenter, msr, rupture_aspect_ratio, upper_seismogenic_depth, lower_seismogenic_depth, mesh_spacing=1.0)[source]¶ Create and return rupture surface object with given properties.
Parameters: - mag – Magnitude value, used to calculate rupture dimensions,
see
_get_rupture_dimensions()
. - nodal_plane – Instance of
openquake.hazardlib.geo.nodalplane.NodalPlane
describing the rupture orientation. - hypocenter – Point representing rupture’s hypocenter.
Returns: Instance of
PlanarSurface
.- mag – Magnitude value, used to calculate rupture dimensions,
see
-
openquake.calculators.ucerf_event_based.
sample_background_model
(hdf5, branch_key, tom, seed, filter_idx, min_mag, npd, hdd, upper_seismogenic_depth, lower_seismogenic_depth, msr=<WC1994>, aspect=1.5, trt='Active Shallow Crust')[source]¶ Generates a rupture set from a sample of the background model
Parameters: - branch_key – Key to indicate the branch for selecting the background model
- tom – Temporal occurrence model as instance of :class: openquake.hazardlib.tom.TOM
- seed – Random seed to use in the call to tom.sample_number_of_occurrences
- filter_idx – Sites for consideration (can be None!)
- min_mag (float) – Minimim magnitude for consideration of background sources
- npd – Nodal plane distribution as instance of :class: openquake.hazardlib.pmf.PMF
- hdd – Hypocentral depth distribution as instance of :class: openquake.hazardlib.pmf.PMF
- aspect (float) – Aspect ratio
- upper_seismogenic_depth (float) – Upper seismogenic depth (km)
- lower_seismogenic_depth (float) – Lower seismogenic depth (km)
- msr – Magnitude scaling relation
- integration_distance (float) – Maximum distance from rupture to site for consideration
views module¶
-
openquake.calculators.views.
avglosses_data_transfer
(token, dstore)[source]¶ Determine the amount of average losses transferred from the workers to the controller node in a risk calculation.
-
openquake.calculators.views.
classify_gsim_lt
(gsim_lt)[source]¶ Returns: “trivial”, “simple” or “complex”
-
openquake.calculators.views.
ebr_data_transfer
(token, dstore)[source]¶ Display the data transferred in an event based risk calculation
-
openquake.calculators.views.
form
(value)[source]¶ Format numbers in a nice way.
>>> form(0) '0' >>> form(0.0) '0.0' >>> form(0.0001) '1.000E-04' >>> form(1003.4) '1,003' >>> form(103.4) '103' >>> form(9.3) '9.300' >>> form(-1.2) '-1.2'
-
openquake.calculators.views.
performance_view
(dstore)[source]¶ Returns the performance view as a numpy array.
-
openquake.calculators.views.
rst_table
(data, header=None, fmt=None)[source]¶ Build a .rst table from a matrix.
>>> tbl = [['a', 1], ['b', 2]] >>> print(rst_table(tbl, header=['Name', 'Value'])) ==== ===== Name Value ==== ===== a 1 b 2 ==== =====
-
openquake.calculators.views.
stats
(name, array, *extras)[source]¶ Returns statistics from an array of numbers.
Parameters: name – a descriptive string Returns: (name, mean, std, min, max, len)
-
openquake.calculators.views.
sum_table
(records)[source]¶ Used to compute summaries. The records are assumed to have numeric fields, except the first field which is ignored, since it typically contains a label. Here is an example:
>>> sum_table([('a', 1), ('b', 2)]) ['total', 3]
-
openquake.calculators.views.
sum_tbl
(tbl, kfield, vfields)[source]¶ Aggregate a composite array and compute the totals on a given key.
>>> dt = numpy.dtype([('name', (bytes, 10)), ('value', int)]) >>> tbl = numpy.array([('a', 1), ('a', 2), ('b', 3)], dt) >>> sum_tbl(tbl, 'name', ['value'])['value'] array([3, 3])
-
openquake.calculators.views.
view_assets_by_site
(token, dstore)[source]¶ Display statistical information about the distribution of the assets
-
openquake.calculators.views.
view_contents
(token, dstore)[source]¶ Returns the size of the contents of the datastore and its total size
-
openquake.calculators.views.
view_dupl_sources
(token, dstore)[source]¶ Display the duplicated sources from source_info
-
openquake.calculators.views.
view_elt
(token, dstore)[source]¶ Display the event loss table averaged by event
-
openquake.calculators.views.
view_exposure_info
(token, dstore)[source]¶ Display info about the exposure model
-
openquake.calculators.views.
view_flat_hcurves
(token, dstore)[source]¶ Display the flat hazard curves for the calculation. They are used for debugging purposes when comparing the results of two calculations. They are the mean over the sites of the mean hazard curves.
-
openquake.calculators.views.
view_flat_hmaps
(token, dstore)[source]¶ Display the flat hazard maps for the calculation. They are used for debugging purposes when comparing the results of two calculations. They are the mean over the sites of the mean hazard maps.
-
openquake.calculators.views.
view_fullreport
(token, dstore)[source]¶ Display an .rst report about the computation
-
openquake.calculators.views.
view_global_poes
(token, dstore)[source]¶ Display global probabilities averaged on all sites and all GMPEs
-
openquake.calculators.views.
view_hmap
(token, dstore)[source]¶ Display the highest 20 points of the mean hazard map. Called as $ oq show hmap:0.1 # 10% PoE
-
openquake.calculators.views.
view_job_info
(token, dstore)[source]¶ Determine the amount of data transferred from the controller node to the workers and back in a classical calculation.
-
openquake.calculators.views.
view_mean_disagg
(token, dstore)[source]¶ Display mean quantities for the disaggregation. Useful for checking differences between two calculations.
-
openquake.calculators.views.
view_num_units
(token, dstore)[source]¶ Display the number of units by taxonomy
-
openquake.calculators.views.
view_performance
(token, dstore)[source]¶ Display performance information
-
openquake.calculators.views.
view_pmap
(token, dstore)[source]¶ Display the mean ProbabilityMap associated to a given source group name
-
openquake.calculators.views.
view_portfolio_loss
(token, dstore)[source]¶ The loss for the full portfolio, for each realization and loss type, extracted from the event loss table.
-
openquake.calculators.views.
view_required_params_per_trt
(token, dstore)[source]¶ Display the parameters needed by each tectonic region type
-
openquake.calculators.views.
view_slow_sources
(token, dstore, maxrows=20)[source]¶ Returns the slowest sources
-
openquake.calculators.views.
view_task_classical
(token, dstore)[source]¶ Display info about a given task. Here are a few examples of usage:
$ oq show task_classical:0 # the fastest task $ oq show task_classical:-1 # the slowest task
-
openquake.calculators.views.
view_task_durations
(token, dstore)[source]¶ Display the raw task durations. Here is an example of usage:
$ oq show task_durations:classical
-
openquake.calculators.views.
view_task_info
(token, dstore)[source]¶ Display statistical information about the tasks performance. It is possible to get full information about a specific task with a command like this one, for a classical calculation:
$ oq show task_info:classical
-
openquake.calculators.views.
view_times_by_source_class
(token, dstore)[source]¶ Returns the calculation times depending on the source typology
-
openquake.calculators.views.
view_totlosses
(token, dstore)[source]¶ This is a debugging view. You can use it to check that the total losses, i.e. the losses obtained by summing the average losses on all assets are indeed equal to the aggregate losses. This is a sanity check for the correctness of the implementation.