Source code for openquake.commonlib.logictree

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2010-2017 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.

"""
Logic tree parser, verifier and processor. See specs at
https://blueprints.launchpad.net/openquake-old/+spec/openquake-logic-tree-module

A logic tree object must be iterable and yielding realizations, i.e. objects
with attributes `value`, `weight`, `lt_path` and `ordinal`.
"""

import os
import re
import sys
import copy
import itertools
import collections
import operator
from collections import namedtuple
from decimal import Decimal
import numpy
from openquake.baselib import hdf5
from openquake.baselib.general import groupby
from openquake.baselib.python3compat import raise_
import openquake.hazardlib.source as ohs
from openquake.hazardlib.gsim.base import CoeffsTable
from openquake.hazardlib.gsim.gmpe_table import GMPETable
from openquake.hazardlib.imt import from_string
from openquake.hazardlib import geo, valid, nrml
from openquake.hazardlib.sourceconverter import (
    split_coords_2d, split_coords_3d)

from openquake.baselib.node import (
    node_from_xml, striptag, node_from_elem, Node as N, context)

#: Minimum value for a seed number
MIN_SINT_32 = -(2 ** 31)
#: Maximum value for a seed number
MAX_SINT_32 = (2 ** 31) - 1


[docs]class SourceModel(object): """ A container of SourceGroup instances with some additional attributes describing the source model in the logic tree. """ def __init__(self, names, weight, path, src_groups, num_gsim_paths, ordinal, samples): self.names = names self.weight = weight self.path = path self.src_groups = src_groups self.num_gsim_paths = num_gsim_paths self.ordinal = ordinal self.samples = samples @property def name(self): """ Compact representation for the names """ names = self.names.split() if len(names) == 1: return names[0] elif len(names) == 2: return ' '.join(names) else: return ' '.join([names[0], '...', names[-1]]) @property def num_sources(self): """ Number of sources contained in the source model """ return sum(len(sg) for sg in self.src_groups)
[docs] def get_skeleton(self): """ Return an empty copy of the source model, i.e. without sources, but with the proper attributes for each SourceGroup contained within. """ src_groups = [] for grp in self.src_groups: sg = copy.copy(grp) sg.sources = [] src_groups.append(sg) return self.__class__(self.names, self.weight, self.path, src_groups, self.num_gsim_paths, self.ordinal, self.samples)
def __repr__(self): samples = ', samples=%d' % self.samples if self.samples > 1 else '' return '<%s #%d %s, path=%s, weight=%s%s>' % ( self.__class__.__name__, self.ordinal, self.names, '_'.join(self.path), self.weight, samples)
Realization = namedtuple('Realization', 'value weight lt_path ordinal lt_uid') Realization.uid = property(lambda self: '_'.join(self.lt_uid)) # unique ID Realization.__str__ = lambda self: ( repr(self) if isinstance(self.value, str) # source model realization else str(self.value[0])) # gsim realization
[docs]def get_effective_rlzs(rlzs): """ Group together realizations with the same unique identifier (uid) and yield the first representative of each group. """ effective = [] for uid, group in groupby(rlzs, operator.attrgetter('uid')).items(): rlz = group[0] if all(path == '@' for path in rlz.lt_uid): # empty realization continue effective.append( Realization(rlz.value, sum(r.weight for r in group), rlz.lt_path, rlz.ordinal, rlz.lt_uid)) return effective
[docs]class LogicTreeError(Exception): """ Base class for errors of loading, parsing and validation of logic trees. :param filename: The name of the file which contains an error. :param message: The error message. """ def __init__(self, filename, message): super(LogicTreeError, self).__init__(message) self.filename = filename self.message = message def __str__(self): return "filename '%s': %s" % (self.filename, self.message)
[docs]class ValidationError(LogicTreeError): """ Logic tree file contains a logic error. :param node: XML node object that causes fail. Used to determine the affected line number. All other constructor parameters are passed to :class:`superclass' <LogicTreeError>` constructor. """ def __init__(self, node, *args, **kwargs): super(ValidationError, self).__init__(*args, **kwargs) self.lineno = getattr(node, 'lineno', '?') def __str__(self): return "filename '%s', line %s: %s" % ( self.filename, self.lineno, self.message)
[docs]def sample(weighted_objects, num_samples, seed): """ Take random samples of a sequence of weighted objects :param weighted_objects: A finite sequence of objects with a `.weight` attribute. The weights must sum up to 1. :param num_samples: The number of samples to return :param seed: A random seed :return: A subsequence of the original sequence with `num_samples` elements """ weights = numpy.array([float(obj.weight) for obj in weighted_objects]) numpy.random.seed(seed) idxs = numpy.random.choice(len(weights), num_samples, p=weights) # NB: returning an array would break things return [weighted_objects[idx] for idx in idxs]
[docs]class Branch(object): """ Branch object, represents a ``<logicTreeBranch />`` element. :param branch_id: Value of ``@branchID`` attribute. :param weight: Decimal value of weight assigned to the branch. A text node contents of ``<uncertaintyWeight />`` child node. :param value: The actual uncertainty parameter value. A text node contents of ``<uncertaintyModel />`` child node. Type depends on the branchset's uncertainty type. """ def __init__(self, branch_id, weight, value): self.branch_id = branch_id self.weight = weight self.value = value self.child_branchset = None
# Define the keywords associated with the MFD MFD_UNCERTAINTY_TYPES = ['maxMagGRRelative', 'maxMagGRAbsolute', 'bGRRelative', 'abGRAbsolute', 'incrementalMFDAbsolute'] # Define the keywords associated with the source geometry GEOMETRY_UNCERTAINTY_TYPES = ['simpleFaultDipRelative', 'simpleFaultDipAbsolute', 'simpleFaultGeometryAbsolute', 'complexFaultGeometryAbsolute', 'characteristicFaultGeometryAbsolute']
[docs]class BranchSet(object): """ Branchset object, represents a ``<logicTreeBranchSet />`` element. :param uncertainty_type: String value. According to the spec one of: gmpeModel Branches contain references to different GMPEs. Values are parsed as strings and are supposed to be one of supported GMPEs. See list at :class:`GMPELogicTree`. sourceModel Branches contain references to different PSHA source models. Values are treated as file names, relatively to base path. maxMagGRRelative Different values to add to Gutenberg-Richter ("GR") maximum magnitude. Value should be interpretable as float. bGRRelative Values to add to GR "b" value. Parsed as float. maxMagGRAbsolute Values to replace GR maximum magnitude. Values expected to be lists of floats separated by space, one float for each GR MFD in a target source in order of appearance. abGRAbsolute Values to replace "a" and "b" values of GR MFD. Lists of pairs of floats, one pair for one GR MFD in a target source. incrementalMFDAbsolute Replaces an evenly discretized MFD with the values provided simpleFaultDipRelative Increases or decreases the angle of fault dip from that given in the original source model simpleFaultDipAbsolute Replaces the fault dip in the specified source(s) simpleFaultGeometryAbsolute Replaces the simple fault geometry (trace, upper seismogenic depth lower seismogenic depth and dip) of a given source with the values provided complexFaultGeometryAbsolute Replaces the complex fault geometry edges of a given source with the values provided characteristicFaultGeometryAbsolute Replaces the complex fault geometry surface of a given source with the values provided :param filters: Dictionary, a set of filters to specify which sources should the uncertainty be applied to. Represented as branchset element's attributes in xml: applyToSources The uncertainty should be applied only to specific sources. This filter is required for absolute uncertainties (also only one source can be used for those). Value should be the list of source ids. Can be used only in source model logic tree. applyToSourceType Can be used in the source model logic tree definition. Allows to specify to which source type (area, point, simple fault, complex fault) the uncertainty applies to. applyToTectonicRegionType Can be used in both the source model and GMPE logic trees. Allows to specify to which tectonic region type (Active Shallow Crust, Stable Shallow Crust, etc.) the uncertainty applies to. This filter is required for all branchsets in GMPE logic tree. """ def __init__(self, uncertainty_type, filters): self.branches = [] self.uncertainty_type = uncertainty_type self.filters = filters
[docs] def enumerate_paths(self): """ Generate all possible paths starting from this branch set. :returns: Generator of two-item tuples. Each tuple contains weight of the path (calculated as a product of the weights of all path's branches) and list of path's :class:`Branch` objects. Total sum of all paths' weights is 1.0 """ for path in self._enumerate_paths([]): flat_path = [] weight = Decimal('1.0') while path: path, branch = path weight *= branch.weight flat_path.append(branch) yield weight, flat_path[::-1]
def _enumerate_paths(self, prefix_path): """ Recursive (private) part of :func:`enumerate_paths`. Returns generator of recursive lists of two items, where second item is the branch object and first one is itself list of two items. """ for branch in self.branches: path = [prefix_path, branch] if branch.child_branchset is not None: for subpath in branch.child_branchset._enumerate_paths(path): yield subpath else: yield path
[docs] def get_branch_by_id(self, branch_id): """ Return :class:`Branch` object belonging to this branch set with id equal to ``branch_id``. """ for branch in self.branches: if branch.branch_id == branch_id: return branch raise AssertionError("couldn't find branch '%s'" % branch_id)
[docs] def filter_source(self, source): # pylint: disable=R0911,R0912 """ Apply filters to ``source`` and return ``True`` if uncertainty should be applied to it. """ for key, value in self.filters.items(): if key == 'applyToTectonicRegionType': if value != source.tectonic_region_type: return False elif key == 'applyToSourceType': if value == 'area': if not isinstance(source, ohs.AreaSource): return False elif value == 'point': # area source extends point source if (not isinstance(source, ohs.PointSource) or isinstance(source, ohs.AreaSource)): return False elif value == 'simpleFault': if not isinstance(source, ohs.SimpleFaultSource): return False elif value == 'complexFault': if not isinstance(source, ohs.ComplexFaultSource): return False elif value == 'characteristicFault': if not isinstance(source, ohs.CharacteristicFaultSource): return False else: raise AssertionError("unknown source type '%s'" % value) elif key == 'applyToSources': if source and source.source_id not in value: return False else: raise AssertionError("unknown filter '%s'" % key) # All filters pass, return True. return True
[docs] def apply_uncertainty(self, value, source): """ Apply this branchset's uncertainty with value ``value`` to source ``source``, if it passes :meth:`filters <filter_source>`. This method is not called for uncertainties of types "gmpeModel" and "sourceModel". :param value: The actual uncertainty value of :meth:`sampled <sample>` branch. Type depends on uncertainty type. :param source: The opensha source data object. :return: ``None``, all changes are applied to MFD in place. Therefore all sources have to be reinstantiated after processing is done in order to sample the tree once again. """ if not self.filter_source(source): # source didn't pass the filter return if self.uncertainty_type in MFD_UNCERTAINTY_TYPES: self._apply_uncertainty_to_mfd(source.mfd, value) elif self.uncertainty_type in GEOMETRY_UNCERTAINTY_TYPES: self._apply_uncertainty_to_geometry(source, value) else: raise AssertionError("unknown uncertainty type '%s'" % self.uncertainty_type)
def _apply_uncertainty_to_geometry(self, source, value): """ Modify ``source`` geometry with the uncertainty value ``value`` """ if self.uncertainty_type == 'simpleFaultDipRelative': source.modify('adjust_dip', dict(increment=value)) elif self.uncertainty_type == 'simpleFaultDipAbsolute': source.modify('set_dip', dict(dip=value)) elif self.uncertainty_type == 'simpleFaultGeometryAbsolute': trace, usd, lsd, dip, spacing = value source.modify( 'set_geometry', dict(fault_trace=trace, upper_seismogenic_depth=usd, lower_seismogenic_depth=lsd, dip=dip, spacing=spacing)) elif self.uncertainty_type == 'complexFaultGeometryAbsolute': edges, spacing = value source.modify('set_geometry', dict(edges=edges, spacing=spacing)) elif self.uncertainty_type == 'characteristicFaultGeometryAbsolute': source.modify('set_geometry', dict(surface=value)) def _apply_uncertainty_to_mfd(self, mfd, value): """ Modify ``mfd`` object with uncertainty value ``value``. """ if self.uncertainty_type == 'abGRAbsolute': a, b = value mfd.modify('set_ab', dict(a_val=a, b_val=b)) elif self.uncertainty_type == 'bGRRelative': mfd.modify('increment_b', dict(value=value)) elif self.uncertainty_type == 'maxMagGRRelative': mfd.modify('increment_max_mag', dict(value=value)) elif self.uncertainty_type == 'maxMagGRAbsolute': mfd.modify('set_max_mag', dict(value=value)) elif self.uncertainty_type == 'incrementalMFDAbsolute': min_mag, bin_width, occur_rates = value mfd.modify('set_mfd', dict(min_mag=min_mag, bin_width=bin_width, occurrence_rates=occur_rates))
[docs]class FakeSmlt(object): """ A replacement for the SourceModelLogicTree class, to be used when there is a trivial source model logic tree. In practice, when `source_model_logic_tree_file` is missing but there is a `source_model_file` in the job.ini file. """ def __init__(self, filename, seed=0, num_samples=0): self.filename = filename self.basepath = os.path.dirname(filename) self.seed = seed self.num_samples = num_samples self.tectonic_region_types = set()
[docs] def gen_source_models(self, gsim_lt): """ Yield the underlying SourceModel, multiple times if there is sampling """ num_gsim_paths = 1 if self.num_samples else gsim_lt.get_num_paths() for i, rlz in enumerate(self): yield SourceModel( rlz.value, rlz.weight, ('b1',), [], num_gsim_paths, i, 1)
[docs] def make_apply_uncertainties(self, branch_ids): """ :returns: a do nothing function """ return lambda source: None
def __iter__(self): name = os.path.basename(self.filename) smlt_path = ('b1',) if self.num_samples: # many realizations of equal weight weight = 1. / self.num_samples for i in range(self.num_samples): yield Realization(name, weight, smlt_path, None, smlt_path) else: # there is a single realization yield Realization(name, 1.0, smlt_path, 0, smlt_path)
[docs]class SourceModelLogicTree(object): """ Source model logic tree parser. :param filename: Full pathname of logic tree file :param validate: Boolean indicating whether or not the tree should be validated while parsed. This should be set to ``True`` on initial load of the logic tree (before importing it to the database) and to ``False`` on workers side (when loaded from the database). :raises ValidationError: If logic tree file has a logic error, which can not be prevented by xml schema rules (like referencing sources with missing id). """ _xmlschema = None FILTERS = ('applyToTectonicRegionType', 'applyToSources', 'applyToSourceType') SOURCE_TYPES = ('point', 'area', 'complexFault', 'simpleFault', 'characteristicFault') def __init__(self, filename, validate=True, seed=0, num_samples=0): self.filename = filename self.basepath = os.path.dirname(filename) self.seed = seed self.num_samples = num_samples self.branches = {} # branch_id -> branch self.open_ends = set() self.source_ids = set() self.tectonic_region_types = set() self.source_types = set() self.root_branchset = None root = nrml.read(filename) try: tree = root.logicTree except AttributeError: raise ValidationError( root, self.filename, "missing logicTree node") self.parse_tree(tree, validate)
[docs] def parse_tree(self, tree_node, validate): """ Parse the whole tree and point ``root_branchset`` attribute to the tree's root. """ for depth, branchinglevel_node in enumerate(tree_node.nodes): self.parse_branchinglevel(branchinglevel_node, depth, validate)
[docs] def parse_branchinglevel(self, branchinglevel_node, depth, validate): """ Parse one branching level. :param branchinglevel_node: ``etree.Element`` object with tag "logicTreeBranchingLevel". :param depth: The sequential number of this branching level, based on 0. :param validate: Whether or not the branching level, its branchsets and their branches should be validated. Enumerates children branchsets and call :meth:`parse_branchset`, :meth:`validate_branchset`, :meth:`parse_branches` and finally :meth:`apply_branchset` for each. Keeps track of "open ends" -- the set of branches that don't have any child branchset on this step of execution. After processing of every branching level only those branches that are listed in it can have child branchsets (if there is one on the next level). """ new_open_ends = set() branchsets = branchinglevel_node.nodes for number, branchset_node in enumerate(branchsets): branchset = self.parse_branchset(branchset_node, depth, number, validate) self.parse_branches(branchset_node, branchset, validate) if self.root_branchset is None: # not set yet self.root_branchset = branchset else: self.apply_branchset(branchset_node, branchset) for branch in branchset.branches: new_open_ends.add(branch) self.open_ends.clear() self.open_ends.update(new_open_ends)
[docs] def parse_branchset(self, branchset_node, depth, number, validate): """ Create :class:`BranchSet` object using data in ``branchset_node``. :param branchset_node: ``etree.Element`` object with tag "logicTreeBranchSet". :param depth: The sequential number of branchset's branching level, based on 0. :param number: Index number of this branchset inside branching level, based on 0. :param validate: Whether or not filters defined in branchset and the branchset itself should be validated. :returns: An instance of :class:`BranchSet` with filters applied but with no branches (they're attached in :meth:`parse_branches`). """ uncertainty_type = branchset_node.attrib.get('uncertaintyType') filters = dict((filtername, branchset_node.attrib.get(filtername)) for filtername in self.FILTERS if filtername in branchset_node.attrib) if validate: self.validate_filters(branchset_node, uncertainty_type, filters) filters = self.parse_filters(branchset_node, uncertainty_type, filters) branchset = BranchSet(uncertainty_type, filters) if validate: self.validate_branchset(branchset_node, depth, number, branchset) return branchset
[docs] def parse_branches(self, branchset_node, branchset, validate): """ Create and attach branches at ``branchset_node`` to ``branchset``. :param branchset_node: Same as for :meth:`parse_branchset`. :param branchset: An instance of :class:`BranchSet`. :param validate: Whether or not branches' uncertainty values should be validated. Checks that each branch has :meth:`valid <validate_uncertainty_value>` value, unique id and that all branches have total weight of 1.0. :return: ``None``, all branches are attached to provided branchset. """ weight_sum = 0 branches = branchset_node.nodes for branchnode in branches: weight = ~branchnode.uncertaintyWeight weight_sum += weight value_node = node_from_elem(branchnode.uncertaintyModel) if validate: self.validate_uncertainty_value(value_node, branchset) value = self.parse_uncertainty_value(value_node, branchset) branch_id = branchnode.attrib.get('branchID') branch = Branch(branch_id, weight, value) if branch_id in self.branches: raise ValidationError( branchnode, self.filename, "branchID '%s' is not unique" % branch_id) self.branches[branch_id] = branch branchset.branches.append(branch) if weight_sum != 1.0: raise ValidationError( branchset_node, self.filename, "branchset weights don't sum up to 1.0")
[docs] def gen_source_models(self, gsim_lt): """ Yield empty SourceModel instances (one per effective realization) """ samples_by_lt_path = self.samples_by_lt_path() for i, rlz in enumerate(get_effective_rlzs(self)): smpath = rlz.lt_path num_samples = samples_by_lt_path[smpath] num_gsim_paths = (num_samples if self.num_samples else gsim_lt.get_num_paths()) yield SourceModel( rlz.value, rlz.weight / num_samples, smpath, [], num_gsim_paths, i, num_samples)
[docs] def sample_path(self, seed): """ Return the model name and a list of branch ids. :param seed: the seed used for the sampling """ branchset = self.root_branchset branch_ids = [] while branchset is not None: [branch] = sample(branchset.branches, 1, seed) branch_ids.append(branch.branch_id) branchset = branch.child_branchset modelname = self.root_branchset.get_branch_by_id(branch_ids[0]).value return modelname, branch_ids
def __iter__(self): """ Yield Realization tuples. Notice that the weight is homogeneous when sampling is enabled, since it is accounted for in the sampling procedure. """ if self.num_samples: # random sampling of the logic tree weight = 1. / self.num_samples for i in range(self.num_samples): name, sm_lt_path = self.sample_path(self.seed + i) yield Realization(name, weight, tuple(sm_lt_path), None, tuple(sm_lt_path)) else: # full enumeration ordinal = 0 for weight, smlt_path in self.root_branchset.enumerate_paths(): name = smlt_path[0].value smlt_branch_ids = [branch.branch_id for branch in smlt_path] yield Realization(name, weight, tuple(smlt_branch_ids), ordinal, tuple(smlt_branch_ids)) ordinal += 1
[docs] def parse_uncertainty_value(self, node, branchset): """ See superclass' method for description and signature specification. Doesn't change source model file name, converts other values to either pair of floats or a single float depending on uncertainty type. """ if branchset.uncertainty_type == 'sourceModel': return node.text.strip() elif branchset.uncertainty_type == 'abGRAbsolute': [a, b] = node.text.strip().split() return float(a), float(b) elif branchset.uncertainty_type == 'incrementalMFDAbsolute': min_mag, bin_width = (node.incrementalMFD["minMag"], node.incrementalMFD["binWidth"]) return min_mag, bin_width, ~node.incrementalMFD.occurRates elif branchset.uncertainty_type == 'simpleFaultGeometryAbsolute': return self._parse_simple_fault_geometry_surface( node.simpleFaultGeometry) elif branchset.uncertainty_type == 'complexFaultGeometryAbsolute': return self._parse_complex_fault_geometry_surface( node.complexFaultGeometry) elif branchset.uncertainty_type ==\ 'characteristicFaultGeometryAbsolute': surfaces = [] for geom_node in node.surface: if "simpleFaultGeometry" in geom_node.tag: trace, usd, lsd, dip, spacing =\ self._parse_simple_fault_geometry_surface(geom_node) surfaces.append(geo.SimpleFaultSurface.from_fault_data( trace, usd, lsd, dip, spacing)) elif "complexFaultGeometry" in geom_node.tag: edges, spacing =\ self._parse_complex_fault_geometry_surface(geom_node) surfaces.append(geo.ComplexFaultSurface.from_fault_data( edges, spacing)) elif "planarSurface" in geom_node.tag: surfaces.append( self._parse_planar_geometry_surface(geom_node)) else: pass if len(surfaces) > 1: return geo.MultiSurface(surfaces) else: return surfaces[0] else: return float(node.text.strip())
def _parse_simple_fault_geometry_surface(self, node): """ Parses a simple fault geometry surface """ spacing = node["spacing"] usd, lsd, dip = (~node.upperSeismoDepth, ~node.lowerSeismoDepth, ~node.dip) # Parse the geometry coords = split_coords_2d(~node.LineString.posList) trace = geo.Line([geo.Point(*p) for p in coords]) return trace, usd, lsd, dip, spacing def _parse_complex_fault_geometry_surface(self, node): """ Parses a complex fault geometry surface """ spacing = node["spacing"] edges = [] for edge_node in node.nodes: coords = split_coords_3d(~edge_node.LineString.posList) edges.append(geo.Line([geo.Point(*p) for p in coords])) return edges, spacing def _parse_planar_geometry_surface(self, node): """ Parses a planar geometry surface """ spacing = node["spacing"] nodes = [] for key in ["topLeft", "topRight", "bottomRight", "bottomLeft"]: nodes.append(geo.Point(getattr(node, key)["lon"], getattr(node, key)["lat"], getattr(node, key)["depth"])) top_left, top_right, bottom_right, bottom_left = tuple(nodes) return geo.PlanarSurface.from_corner_points(spacing, top_left, top_right, bottom_right, bottom_left)
[docs] def validate_uncertainty_value(self, node, branchset): """ See superclass' method for description and signature specification. Checks that the following conditions are met: * For uncertainty of type "sourceModel": referenced file must exist and be readable. This is checked in :meth:`collect_source_model_data` along with saving the source model information. * For uncertainty of type "abGRAbsolute": value should be two float values. * For both absolute uncertainties: the source (only one) must be referenced in branchset's filter "applyToSources". * For all other cases: value should be a single float value. """ _float_re = re.compile(r'^(\+|\-)?(\d+|\d*\.\d+)$') if branchset.uncertainty_type == 'sourceModel': smfname = node.text.strip() try: self.collect_source_model_data(smfname) except Exception as exc: raise ValidationError(node, self.filename, str(exc)) elif branchset.uncertainty_type == 'abGRAbsolute': ab = (node.text.strip()).split() if len(ab) == 2: a, b = ab if _float_re.match(a) and _float_re.match(b): return raise ValidationError( node, self.filename, 'expected a pair of floats separated by space' ) elif branchset.uncertainty_type == 'incrementalMFDAbsolute': min_mag, bin_width = (node.incrementalMFD["minMag"], node.incrementalMFD["binWidth"]) rates = node.incrementalMFD.occurRates.text with context(self.filename, node): rates = valid.positivefloats(rates) if _float_re.match(min_mag) and _float_re.match(bin_width): return raise ValidationError( node, self.filename, "expected valid 'incrementalMFD' node" ) elif branchset.uncertainty_type == 'simpleFaultGeometryAbsolute': self._validate_simple_fault_geometry(node.simpleFaultGeometry, _float_re) elif branchset.uncertainty_type == 'complexFaultGeometryAbsolute': self._validate_complex_fault_geometry(node.complexFaultGeometry, _float_re) elif branchset.uncertainty_type ==\ 'characteristicFaultGeometryAbsolute': for geom_node in node.surface: if "simpleFaultGeometry" in geom_node.tag: self._validate_simple_fault_geometry(geom_node, _float_re) elif "complexFaultGeometry" in geom_node.tag: self._validate_complex_fault_geometry(geom_node, _float_re) elif "planarSurface" in geom_node.tag: self._validate_planar_fault_geometry(geom_node, _float_re) else: raise ValidationError( geom_node, self.filename, "Surface geometry type not recognised") else: if not _float_re.match(node.text.strip()): raise ValidationError( node, self.filename, 'expected single float value' )
def _validate_simple_fault_geometry(self, node, _float_re): """ Validates a node representation of a simple fault geometry """ try: # Parse the geometry coords = split_coords_2d(~node.LineString.posList) trace = geo.Line([geo.Point(*p) for p in coords]) except ValueError: # If the geometry cannot be created then use the ValidationError # to point the user to the incorrect node. Hence, if trace is # compiled successfully then len(trace) is True, otherwise it is # False trace = [] if len(trace): return raise ValidationError( node, self.filename, "'simpleFaultGeometry' node is not valid") def _validate_complex_fault_geometry(self, node, _float_re): """ Validates a node representation of a complex fault geometry - this check merely verifies that the format is correct. If the geometry does not conform to the Aki & Richards convention this will not be verified here, but will raise an error when the surface is created. """ valid_edges = [] for edge_node in node.nodes: try: coords = split_coords_3d(map( float, edge_node.LineString.posList.text.split())) edge = geo.Line([geo.Point(*p) for p in coords]) except ValueError: # See use of validation error in simple geometry case # The node is valid if all of the edges compile correctly edge = [] if len(edge): valid_edges.append(True) else: valid_edges.append(False) if _float_re.match(node["spacing"]) and all(valid_edges): return raise ValidationError( node, self.filename, "'complexFaultGeometry' node is not valid") def _validate_planar_fault_geometry(self, node, _float_re): """ Validares a node representation of a planar fault geometry """ valid_spacing = _float_re.match(node["spacing"]) for key in ["topLeft", "topRight", "bottomLeft", "bottomRight"]: is_valid = _float_re.match(getattr(node, key)["lon"]) and\ _float_re.match(getattr(node, key)["lat"]) and\ _float_re.match(getattr(node, key)["depth"]) if is_valid: lon = float(getattr(node, key)["lon"]) lat = float(getattr(node, key)["lat"]) depth = float(getattr(node, key)["depth"]) valid_lon = (lon >= -180.0) and (lon <= 180.0) valid_lat = (lat >= -90.0) and (lat <= 90.0) valid_depth = (depth >= 0.0) is_valid = valid_lon and valid_lat and valid_depth if not is_valid or not valid_spacing: raise ValidationError( node, self.filename, "'planarFaultGeometry' node is not valid")
[docs] def parse_filters(self, branchset_node, uncertainty_type, filters): """ See superclass' method for description and signature specification. Converts "applyToSources" filter value by just splitting it to a list. """ if 'applyToSources' in filters: filters['applyToSources'] = filters['applyToSources'].split() return filters
[docs] def validate_filters(self, branchset_node, uncertainty_type, filters): """ See superclass' method for description and signature specification. Checks that the following conditions are met: * "sourceModel" uncertainties can not have filters. * Absolute uncertainties must have only one filter -- "applyToSources", with only one source id. * All other uncertainty types can have either no or one filter. * Filter "applyToSources" must mention only source ids that exist in source models. * Filter "applyToTectonicRegionType" must mention only tectonic region types that exist in source models. * Filter "applyToSourceType" must mention only source types that exist in source models. """ if uncertainty_type == 'sourceModel' and filters: raise ValidationError( branchset_node, self.filename, 'filters are not allowed on source model uncertainty' ) if len(filters) > 1: raise ValidationError( branchset_node, self.filename, "only one filter is allowed per branchset" ) if 'applyToTectonicRegionType' in filters: if not filters['applyToTectonicRegionType'] \ in self.tectonic_region_types: raise ValidationError( branchset_node, self.filename, "source models don't define sources of tectonic region " "type '%s'" % filters['applyToTectonicRegionType'] ) if uncertainty_type in ('abGRAbsolute', 'maxMagGRAbsolute', 'simpleFaultGeometryAbsolute', 'complexFaultGeometryAbsolute'): if not filters or not list(filters) == ['applyToSources'] \ or not len(filters['applyToSources'].split()) == 1: raise ValidationError( branchset_node, self.filename, "uncertainty of type '%s' must define 'applyToSources' " "with only one source id" % uncertainty_type ) if uncertainty_type in ('simpleFaultDipRelative', 'simpleFaultDipAbsolute'): if not filters or (not ('applyToSources' in filters.keys()) and not ('applyToSourceType' in filters.keys())): raise ValidationError( branchset_node, self.filename, "uncertainty of type '%s' must define either" "'applyToSources' or 'applyToSourceType'" % uncertainty_type ) if 'applyToSourceType' in filters: if not filters['applyToSourceType'] in self.source_types: raise ValidationError( branchset_node, self.filename, "source models don't define sources of type '%s'" % filters['applyToSourceType'] ) if 'applyToSources' in filters: for source_id in filters['applyToSources'].split(): if source_id not in self.source_ids: raise ValidationError( branchset_node, self.filename, "source with id '%s' is not defined in source models" % source_id )
[docs] def validate_branchset(self, branchset_node, depth, number, branchset): """ See superclass' method for description and signature specification. Checks that the following conditions are met: * First branching level must contain exactly one branchset, which must be of type "sourceModel". * All other branchsets must not be of type "sourceModel" or "gmpeModel". """ if depth == 0: if number > 0: raise ValidationError( branchset_node, self.filename, 'there must be only one branch set ' 'on first branching level' ) elif branchset.uncertainty_type != 'sourceModel': raise ValidationError( branchset_node, self.filename, 'first branchset must define an uncertainty ' 'of type "sourceModel"' ) else: if branchset.uncertainty_type == 'sourceModel': raise ValidationError( branchset_node, self.filename, 'uncertainty of type "sourceModel" can be defined ' 'on first branchset only' ) elif branchset.uncertainty_type == 'gmpeModel': raise ValidationError( branchset_node, self.filename, 'uncertainty of type "gmpeModel" is not allowed ' 'in source model logic tree' )
[docs] def apply_branchset(self, branchset_node, branchset): """ See superclass' method for description and signature specification. Parses branchset node's attribute ``@applyToBranches`` to apply following branchests to preceding branches selectively. Branching level can have more than one branchset exactly for this: different branchsets can apply to different open ends. Checks that branchset tries to be applied only to branches on previous branching level which do not have a child branchset yet. """ apply_to_branches = branchset_node.attrib.get('applyToBranches') if apply_to_branches: apply_to_branches = apply_to_branches.split() for branch_id in apply_to_branches: if branch_id not in self.branches: raise ValidationError( branchset_node, self.filename, "branch '%s' is not yet defined" % branch_id ) branch = self.branches[branch_id] if branch.child_branchset is not None: raise ValidationError( branchset_node, self.filename, "branch '%s' already has child branchset" % branch_id ) if branch not in self.open_ends: raise ValidationError( branchset_node, self.filename, 'applyToBranches must reference only branches ' 'from previous branching level' ) branch.child_branchset = branchset else: for branch in self.open_ends: branch.child_branchset = branchset
def _get_source_model(self, source_model_file): return open(os.path.join(self.basepath, source_model_file))
[docs] def collect_source_model_data(self, source_model): """ Parse source model file and collect information about source ids, source types and tectonic region types available in it. That information is used then for :meth:`validate_filters` and :meth:`validate_uncertainty_value`. """ smodel = nrml.read(self._get_source_model(source_model)).sourceModel n = len('Source') for node in smodel: with context(source_model, node): self.tectonic_region_types.add(node['tectonicRegion']) source_id = node['id'] source_type = striptag(node.tag)[n:] self.source_ids.add(source_id) self.source_types.add(source_type)
[docs] def make_apply_uncertainties(self, branch_ids): """ Parse the path through the source model logic tree and return "apply uncertainties" function. :param branch_ids: List of string identifiers of branches, representing the path through source model logic tree. :return: Function to be applied to all the sources as they get read from the database and converted to hazardlib representation. Function takes one argument, that is the hazardlib source object, and applies uncertainties to it in-place. """ branchset = self.root_branchset branchsets_and_uncertainties = [] branch_ids = list(branch_ids[::-1]) while branchset is not None: branch = branchset.get_branch_by_id(branch_ids.pop(-1)) if not branchset.uncertainty_type == 'sourceModel': branchsets_and_uncertainties.append((branchset, branch.value)) branchset = branch.child_branchset def apply_uncertainties(source): for branchset, value in branchsets_and_uncertainties: branchset.apply_uncertainty(value, source) return True # sentinel that the source was changed return apply_uncertainties
[docs] def samples_by_lt_path(self): """ Returns a dictionary lt_path -> how many times that path was sampled """ return collections.Counter(rlz.lt_path for rlz in self)
BranchTuple = namedtuple('BranchTuple', 'bset id uncertainty weight effective')
[docs]class InvalidLogicTree(Exception): pass
[docs]class GsimLogicTree(object): """ A GsimLogicTree instance is an iterable yielding `Realization` tuples with attributes `value`, `weight` and `lt_path`, where `value` is a dictionary {trt: gsim}, `weight` is a number in the interval 0..1 and `lt_path` is a tuple with the branch ids of the given realization. :param str fname: full path of the gsim_logic_tree file :param tectonic_region_types: a sequence of distinct tectonic region types :param ltnode: usually None, but it can also be a :class:`openquake.hazardlib.nrml.Node` object describing the GSIM logic tree XML file, to avoid reparsing it """
[docs] @classmethod def from_(cls, gsim): """ Generate a trivial GsimLogicTree from a single GSIM instance. """ ltbranch = N('logicTreeBranch', {'branchID': 'b1'}, nodes=[N('uncertaintyModel', text=str(gsim)), N('uncertaintyWeight', text='1.0')]) lt = N('logicTree', {'logicTreeID': 'lt1'}, nodes=[N('logicTreeBranchingLevel', {'branchingLevelID': 'bl1'}, nodes=[N('logicTreeBranchSet', {'applyToTectonicRegionType': '*', 'branchSetID': 'bs1', 'uncertaintyType': 'gmpeModel'}, nodes=[ltbranch])])]) return cls(str(gsim), ['*'], ltnode=lt)
def __init__(self, fname, tectonic_region_types=['*'], ltnode=None): self.fname = fname self.tectonic_region_types = trts = sorted(tectonic_region_types) if len(trts) > len(set(trts)): raise ValueError( 'The given tectonic region types are not distinct: %s' % ','.join(self.tectonic_region_types)) self.values = collections.defaultdict(list) # {trt: gsims} self._ltnode = ltnode or node_from_xml(fname).logicTree self.gmpe_tables = set() # populated right below self.all_trts, self.branches = self._build_trts_branches() if tectonic_region_types and not self.branches: raise InvalidLogicTree( 'Could not find branches with attribute ' "'applyToTectonicRegionType' in %s" % set(tectonic_region_types))
[docs] def check_imts(self, imts): """ Make sure the IMTs are recognized by all GSIMs in the logic tree """ for trt in self.values: for gsim in self.values[trt]: for attr in dir(gsim): coeffs = getattr(gsim, attr) if not isinstance(coeffs, CoeffsTable): continue for imt in imts: if imt.startswith('SA'): try: coeffs[from_string(imt)] except KeyError: raise ValueError( '%s is out of the period range defined ' 'for %s' % (imt, gsim))
[docs] def store_gmpe_tables(self, dstore): """ Store the GMPE tables in HDF5 format inside the datastore """ dest = dstore.hdf5 dirname = os.path.dirname(self.fname) for gmpe_table in sorted(self.gmpe_tables): hdf5path = os.path.join(dirname, gmpe_table) with hdf5.File(hdf5path, 'r') as f: for group in f: name = '%s/%s' % (gmpe_table, group) if hasattr(f[group], 'value'): # dataset, not group dstore[name] = f[group].value for k, v in f[group].attrs.items(): dstore[name].attrs[k] = v else: grp = dest.require_group(gmpe_table) f.copy(group, grp)
def __str__(self): """ :returns: an XML string representing the logic tree """ return nrml.to_string(self._ltnode)
[docs] def reduce(self, trts): """ Reduce the GsimLogicTree. :param trts: a subset of tectonic region types :returns: a reduced GsimLogicTree instance """ return self.__class__(self.fname, sorted(trts), ltnode=self._ltnode)
[docs] def get_num_branches(self): """ Return the number of effective branches for branchset id, as a dictionary. """ num = {} for branchset, branches in itertools.groupby( self.branches, operator.attrgetter('bset')): num[branchset['branchSetID']] = sum( 1 for br in branches if br.effective) return num
[docs] def get_num_paths(self): """ Return the effective number of paths in the tree. """ # NB: the algorithm assume a symmetric logic tree for the GSIMs; # in the future we may relax such assumption num_branches = self.get_num_branches() if not sum(num_branches.values()): return 0 num = 1 for val in num_branches.values(): if val: # the branch is effective num *= val return num
def _build_trts_branches(self): # do the parsing, called at instantiation time to populate .values trts = [] branches = [] branchsetids = set() for branching_level in self._ltnode: if len(branching_level) > 1: raise InvalidLogicTree( 'Branching level %s has multiple branchsets' % branching_level['branchingLevelID']) for branchset in branching_level: if branchset['uncertaintyType'] != 'gmpeModel': raise InvalidLogicTree( 'only uncertainties of type ' '"gmpeModel" are allowed in gmpe logic tree') bsid = branchset['branchSetID'] if bsid in branchsetids: raise InvalidLogicTree( 'Duplicated branchSetID %s' % bsid) else: branchsetids.add(bsid) trt = branchset.attrib.get('applyToTectonicRegionType') if trt: trts.append(trt) # NB: '*' is used in scenario calculations to disable filtering effective = (self.tectonic_region_types == ['*'] or trt in self.tectonic_region_types) weights = [] for branch in branchset: weight = Decimal(branch.uncertaintyWeight.text) weights.append(weight) branch_id = branch['branchID'] uncertainty = branch.uncertaintyModel if hasattr(uncertainty.text, 'strip'): # a string gsim_name = uncertainty.text.strip() if gsim_name == 'GMPETable': # a bit hackish: set the GMPE_DIR equal to the # directory where the gsim_logic_tree file is GMPETable.GMPE_DIR = os.path.dirname(self.fname) self.gmpe_tables.add(uncertainty['gmpe_table']) try: gsim = valid.gsim(gsim_name, **uncertainty.attrib) except: etype, exc, tb = sys.exc_info() raise_(etype, "%s in file %s" % (exc, self.fname), tb) uncertainty.text = gsim else: # already converted GSIM gsim = uncertainty.text self.values[trt].append(gsim) bt = BranchTuple( branchset, branch_id, gsim, weight, effective) branches.append(bt) assert sum(weights) == 1, weights if len(trts) > len(set(trts)): raise InvalidLogicTree( 'Found duplicated applyToTectonicRegionType=%s' % trts) branches.sort(key=lambda b: (b.bset['branchSetID'], b.id)) # TODO: add an .idx to each GSIM ? return trts, branches
[docs] def get_gsim_by_trt(self, rlz, trt): """ :param rlz: a logictree Realization :param: a tectonic region type string :returns: the GSIM string associated to the given realization """ if trt == '*': # assume a single TRT return rlz.value[0] idx = self.all_trts.index(trt) return rlz.value[idx]
[docs] def get_gsims(self, trt, rlzs=None): """ :param trt: tectonic region type :param rlzs: a sequence of realization indices (or None) :returns: sorted list of available GSIMs for that trt """ if rlzs is None: if trt == '*' or trt == b'*': # fake logictree [trt] = self.values gsims = self.values[trt] else: gsims = set(self.get_gsim_by_trt(rlz, trt) for rlz in rlzs) return sorted(gsims)
def __iter__(self): """ Yield :class:`openquake.commonlib.logictree.Realization` instances """ groups = [] # NB: branches are already sorted for trt in self.all_trts: groups.append([b for b in self.branches if b.bset['applyToTectonicRegionType'] == trt]) # with T tectonic region types there are T groups and T branches for i, branches in enumerate(itertools.product(*groups)): weight = 1 lt_path = [] lt_uid = [] value = [] for trt, branch in zip(self.all_trts, branches): lt_path.append(branch.id) lt_uid.append(branch.id if branch.effective else '@') weight *= branch.weight value.append(branch.uncertainty) yield Realization(tuple(value), weight, tuple(lt_path), i, tuple(lt_uid)) def __repr__(self): lines = ['%s,%s,%s,w=%s' % (b.bset['applyToTectonicRegionType'], b.id, b.uncertainty, b.weight) for b in self.branches if b.effective] return '<%s\n%s>' % (self.__class__.__name__, '\n'.join(lines))