Source code for openquake.hazardlib.gsim.toro_2002

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2012-2022 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.

"""
Module exports :class:`ToroEtAl2002`, class:`ToroEtAl2002SHARE`.
"""
import numpy as np

from openquake.hazardlib.gsim.campbell_2003 import _compute_faulting_style_term
from openquake.hazardlib.gsim.base import CoeffsTable, GMPE
from openquake.hazardlib import const
from openquake.hazardlib.imt import PGA, SA


def _compute_mean(C, mag, rjb):
    """
    Compute mean value according to equation 3, page 46.
    """
    mean = (C['c1'] +
            _compute_term1(C, mag) +
            _compute_term2(C, mag, rjb))
    return mean


def _compute_term1(C, mag):
    """
    Compute magnitude dependent terms (2nd and 3rd) in equation 3
    page 46.
    """
    mag_diff = mag - 6

    return C['c2'] * mag_diff + C['c3'] * mag_diff ** 2


def _compute_term2(C, mag, rjb):
    """
    Compute distance dependent terms (4th, 5th and 6th) in equation 3
    page 46. The factor 'RM' is computed according to the 2002 model
    (equation 4-3).
    """
    RM = np.sqrt(rjb ** 2 + (C['c7'] ** 2) *
                 np.exp(-1.25 + 0.227 * mag) ** 2)

    return (-C['c4'] * np.log(RM) -
            (C['c5'] - C['c4']) *
            np.maximum(np.log(RM / 100), 0) - C['c6'] * RM)


[docs]class ToroEtAl2002(GMPE): """ Implements GMPE developed by G. R. Toro, N. A. Abrahamson, J. F. Schneider and published in "Model of Strong Ground Motions from Earthquakes in Central and Eastern North America: Best Estimates and Uncertainties" (Seismological Research Letters, Volume 68, Number 1, 1997) and "Modification of the Toro et al. 1997 Attenuation Equations for Large Magnitudes and Short Distances" (available at: http://www.riskeng.com/downloads/attenuation_equations) The class implements equations for Midcontinent, based on moment magnitude. SA at 3 and 4 s (not supported by the original equations) have been added in the context of the SHARE project and they are obtained from SA at 2 s scaled by specific factors for 3 and 4 s. """ #: Supported tectonic region type is stable continental crust, #: given that the equations have been derived for central and eastern #: north America DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.STABLE_CONTINENTAL #: Supported intensity measure types are spectral acceleration, #: and peak ground acceleration, see table 2 page 47. DEFINED_FOR_INTENSITY_MEASURE_TYPES = {PGA, SA} #: Supported intensity measure component is the geometric mean of #: two : horizontal components #: :attr:`~openquake.hazardlib.const.IMC.AVERAGE_HORIZONTAL`, DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.AVERAGE_HORIZONTAL #: Supported standard deviation type is only total. DEFINED_FOR_STANDARD_DEVIATION_TYPES = {const.StdDev.TOTAL} #: No site parameters required REQUIRES_SITES_PARAMETERS = set() #: Required rupture parameter is only magnitude. REQUIRES_RUPTURE_PARAMETERS = {'mag'} #: Required distance measure is rjb, see equation 4, page 46. REQUIRES_DISTANCES = {'rjb'} #: no fault style adjustement in the base class CONSTS_FS = {}
[docs] def compute(self, ctx: np.recarray, imts, mean, sig, tau, phi): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.compute>` for spec of input and result values. """ for m, imt in enumerate(imts): C = self.COEFFS[imt] mean[m] = _compute_mean(C, ctx.mag, ctx.rjb) # Compute total standard deviation, equations 5 and 6, page 48 # aleatory uncertainty sigma_ale_m = np.interp(ctx.mag, [5.0, 5.5, 8.0], [C['m50'], C['m55'], C['m80']]) sigma_ale_rjb = np.interp( ctx.rjb, [5.0, 20.0], [C['r5'], C['r20']]) sigma_ale = np.sqrt(sigma_ale_m ** 2 + sigma_ale_rjb ** 2) # epistemic uncertainty if imt.period < 1: sigma_epi = 0.36 + 0.07 * (ctx.mag - 6) else: sigma_epi = 0.34 + 0.06 * (ctx.mag - 6) sig[m] = np.sqrt(sigma_ale ** 2 + sigma_epi ** 2) # apply decay factor for 3 and 4 seconds (not originally supported # by the equations) if imt.period == 3.0: mean[m] /= 0.612 if imt.period == 4.0: mean[m] /= 0.559 if self.CONSTS_FS: # fault style and rock adjustement in SHARE C_ADJ = self.COEFFS_FS_ROCK[imt] mean[m] = np.log(np.exp(mean[m]) * ( _compute_faulting_style_term( C_ADJ['Frss'], self.CONSTS_FS['pR'], self.CONSTS_FS['Fnss'], self.CONSTS_FS['pN'], ctx.rake) * C_ADJ['AFrock']))
#: Coefficient tables obtained by joining tables 2, 3, and 4, pages 47, #: 50, 51. COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT c1 c2 c3 c4 c5 c6 c7 m50 m55 m80 r5 r20 pga 2.20 0.81 0.00 1.27 1.16 0.0021 9.3 0.55 0.59 0.50 0.54 0.20 0.03 4.00 0.79 0.00 1.57 1.83 0.0008 11.1 0.62 0.63 0.50 0.62 0.35 0.04 3.68 0.80 0.00 1.46 1.77 0.0013 10.5 0.62 0.63 0.50 0.57 0.29 0.10 2.37 0.81 0.00 1.10 1.02 0.0040 8.3 0.59 0.61 0.50 0.50 0.17 0.20 1.73 0.84 0.00 0.98 0.66 0.0042 7.5 0.60 0.64 0.56 0.45 0.12 0.40 1.07 1.05 -0.10 0.93 0.56 0.0033 7.1 0.63 0.68 0.64 0.45 0.12 1.00 0.09 1.42 -0.20 0.90 0.49 0.0023 6.8 0.63 0.64 0.67 0.45 0.12 2.00 -0.74 1.86 -0.31 0.92 0.46 0.0017 6.9 0.61 0.62 0.66 0.45 0.12 3.00 -0.74 1.86 -0.31 0.92 0.46 0.0017 6.9 0.61 0.62 0.66 0.45 0.12 4.00 -0.74 1.86 -0.31 0.92 0.46 0.0017 6.9 0.61 0.62 0.66 0.45 0.12 """)
[docs]class ToroEtAl2002SHARE(ToroEtAl2002): #: Required rupture parameters are magnitude and rake REQUIRES_RUPTURE_PARAMETERS = {'mag', 'rake'} #: Shear-wave velocity for reference soil conditions in [m s-1] DEFINED_FOR_REFERENCE_VELOCITY = 800. #: Coefficients for faulting style and rock adjustment COEFFS_FS_ROCK = CoeffsTable(sa_damping=5, table="""\ IMT Frss AFrock pga 1.220000 0.735106 0.03 1.179400 0.423049 0.04 1.164000 0.477379 0.10 1.080000 0.888509 0.20 1.190000 1.197291 0.40 1.230000 1.308267 1.00 1.196667 1.265762 2.00 1.140000 1.215779 3.00 1.140000 1.215779 4.00 1.140000 1.215779 """) #: Constants for faulting style adjustment CONSTS_FS = {'Fnss': 0.95, 'pN': 0.01, 'pR': 0.81}