Source code for openquake.hazardlib.gsim.example_a_2021

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2012-2022 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.

import numpy as np
from openquake.baselib.performance import jittable
from openquake.hazardlib.gsim.base import CoeffsTable, GMPE
from openquake.hazardlib import const
from openquake.hazardlib.imt import PGA, SA


@jittable
def _compute_term1(C, mag):
    mag_diff = mag - 6
    return C['c2'] * mag_diff + C['c3'] * mag_diff ** 2


@jittable
def _compute_term2(C, mag, rjb):
    RM = np.sqrt(rjb ** 2 + (C['c7'] ** 2) *
                 np.exp(-1.25 + 0.227 * mag) ** 2)
    res = (-C['c4'] * np.log(RM) - (C['c5'] - C['c4']) *
           np.maximum(np.log(RM / 100), 0) - C['c6'] * RM)
    return res


[docs]class ExampleA2021(GMPE): """ Mimic ToroEtAl2002 """ DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.STABLE_CONTINENTAL DEFINED_FOR_INTENSITY_MEASURE_TYPES = {PGA, SA} DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.AVERAGE_HORIZONTAL DEFINED_FOR_STANDARD_DEVIATION_TYPES = {const.StdDev.TOTAL} REQUIRES_SITES_PARAMETERS = set() REQUIRES_RUPTURE_PARAMETERS = {'mag'} REQUIRES_DISTANCES = {'rjb'} COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT c1 c2 c3 c4 c5 c6 c7 m50 m55 m80 r5 r20 pga 2.20 0.81 0.00 1.27 1.16 0.0021 9.3 0.55 0.59 0.50 0.54 0.20 0.03 4.00 0.79 0.00 1.57 1.83 0.0008 11.1 0.62 0.63 0.50 0.62 0.35 0.04 3.68 0.80 0.00 1.46 1.77 0.0013 10.5 0.62 0.63 0.50 0.57 0.29 0.10 2.37 0.81 0.00 1.10 1.02 0.0040 8.3 0.59 0.61 0.50 0.50 0.17 0.20 1.73 0.84 0.00 0.98 0.66 0.0042 7.5 0.60 0.64 0.56 0.45 0.12 0.40 1.07 1.05 -0.10 0.93 0.56 0.0033 7.1 0.63 0.68 0.64 0.45 0.12 1.00 0.09 1.42 -0.20 0.90 0.49 0.0023 6.8 0.63 0.64 0.67 0.45 0.12 2.00 -0.74 1.86 -0.31 0.92 0.46 0.0017 6.9 0.61 0.62 0.66 0.45 0.12 3.00 -0.74 1.86 -0.31 0.92 0.46 0.0017 6.9 0.61 0.62 0.66 0.45 0.12 4.00 -0.74 1.86 -0.31 0.92 0.46 0.0017 6.9 0.61 0.62 0.66 0.45 0.12 """)
[docs] def compute(self, ctx: np.recarray, imts, mean, sig, tau, phi): mag, rjb = ctx.mag, ctx.rjb for m, imt in enumerate(imts): C = self.COEFFS[imt] mean[m] = (C['c1'] + _compute_term1(C, mag) + _compute_term2(C, mag, rjb)) if imt.period == 3.0: mean[m] /= 0.612 elif imt.period == 4.0: mean[m] /= 0.559 sigma_ale_m = np.interp( mag, [5.0, 5.5, 8.0], [C['m50'], C['m55'], C['m80']]) sigma_ale_rjb = np.interp( rjb, [5.0, 20.0], [C['r5'], C['r20']]) sigma_ale = np.sqrt(sigma_ale_m ** 2 + sigma_ale_rjb ** 2) sigma_epi = (0.36 + 0.07 * (mag - 6) if imt.period < 1 else 0.34 + 0.06 * (mag - 6)) sig[m] = np.sqrt(sigma_ale ** 2 + sigma_epi ** 2)