Source code for openquake.calculators.extract

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2017-2022 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake.  If not, see <http://www.gnu.org/licenses/>.
from urllib.parse import parse_qs
from unittest.mock import Mock
from functools import lru_cache
import collections
import logging
import json
import gzip
import ast
import io

import requests
from h5py._hl.dataset import Dataset
from h5py._hl.group import Group
import numpy
import pandas
from scipy.cluster.vq import kmeans2

from openquake.baselib import config, hdf5, general, writers
from openquake.baselib.hdf5 import ArrayWrapper
from openquake.baselib.general import group_array, println
from openquake.baselib.python3compat import encode, decode
from openquake.hazardlib.gsim.base import ContextMaker
from openquake.hazardlib.calc import disagg, stochastic, filters
from openquake.hazardlib.stats import calc_stats
from openquake.hazardlib.source import rupture
from openquake.commonlib import calc, util, oqvalidation, datastore, logictree
from openquake.calculators import getters

U16 = numpy.uint16
U32 = numpy.uint32
F32 = numpy.float32
F64 = numpy.float64
TWO32 = 2 ** 32
ALL = slice(None)
CHUNKSIZE = 4*1024**2  # 4 MB
SOURCE_ID = stochastic.rupture_dt['source_id']
memoized = lru_cache()


[docs]def lit_eval(string): """ `ast.literal_eval` the string if possible, otherwise returns it unchanged """ try: return ast.literal_eval(string) except (ValueError, SyntaxError): return string
[docs]def get_info(dstore): """ :returns: {'stats': dic, 'loss_types': dic, 'num_rlzs': R} """ oq = dstore['oqparam'] stats = {stat: s for s, stat in enumerate(oq.hazard_stats())} loss_types = {lt: li for li, lt in enumerate(oq.loss_dt().names)} imt = {imt: i for i, imt in enumerate(oq.imtls)} num_rlzs = len(dstore['weights']) return dict(stats=stats, num_rlzs=num_rlzs, loss_types=loss_types, imtls=oq.imtls, investigation_time=oq.investigation_time, poes=oq.poes, imt=imt, uhs_dt=oq.uhs_dt(), limit_states=oq.limit_states, tagnames=oq.aggregate_by)
def _normalize(kinds, info): a = [] b = [] stats = info['stats'] rlzs = False for kind in kinds: if kind.startswith('rlz-'): rlzs = True a.append(int(kind[4:])) b.append(kind) elif kind in stats: a.append(stats[kind]) b.append(kind) elif kind == 'stats': a.extend(stats.values()) b.extend(stats) elif kind == 'rlzs': rlzs = True a.extend(range(info['num_rlzs'])) b.extend(['rlz-%03d' % r for r in range(info['num_rlzs'])]) return a, b, rlzs
[docs]def parse(query_string, info={}): """ :returns: a normalized query_dict as in the following examples: >>> parse('kind=stats', {'stats': {'mean': 0, 'max': 1}}) {'kind': ['mean', 'max'], 'k': [0, 1], 'rlzs': False} >>> parse('kind=rlzs', {'stats': {}, 'num_rlzs': 3}) {'kind': ['rlz-000', 'rlz-001', 'rlz-002'], 'k': [0, 1, 2], 'rlzs': True} >>> parse('kind=mean', {'stats': {'mean': 0, 'max': 1}}) {'kind': ['mean'], 'k': [0], 'rlzs': False} >>> parse('kind=rlz-3&imt=PGA&site_id=0', {'stats': {}}) {'kind': ['rlz-3'], 'imt': ['PGA'], 'site_id': [0], 'k': [3], 'rlzs': True} """ qdic = parse_qs(query_string) loss_types = info.get('loss_types', []) for key, val in sorted(qdic.items()): # convert site_id to an int, loss_type to an int, etc if key == 'loss_type': qdic[key] = [loss_types[k] for k in val] qdic['lt'] = val else: qdic[key] = [lit_eval(v) for v in val] if info: qdic['k'], qdic['kind'], qdic['rlzs'] = _normalize(qdic['kind'], info) return qdic
[docs]def sanitize(query_string): """ Replace `/`, `?`, `&` characters with underscores and '=' with '-' """ return query_string.replace( '/', '_').replace('?', '_').replace('&', '_').replace('=', '-')
[docs]def cast(loss_array, loss_dt): return loss_array.copy().view(loss_dt).squeeze()
[docs]def barray(iterlines): """ Array of bytes """ lst = [line.encode('utf-8') for line in iterlines] arr = numpy.array(lst) return arr
[docs]def extract_(dstore, dspath): """ Extracts an HDF5 path object from the datastore, for instance extract(dstore, 'sitecol'). """ obj = dstore[dspath] if isinstance(obj, Dataset): return ArrayWrapper(obj[()], obj.attrs) elif isinstance(obj, Group): return ArrayWrapper(numpy.array(list(obj)), obj.attrs) else: return obj
[docs]class Extract(dict): """ A callable dictionary of functions with a single instance called `extract`. Then `extract(dstore, fullkey)` dispatches to the function determined by the first part of `fullkey` (a slash-separated string) by passing as argument the second part of `fullkey`. For instance extract(dstore, 'sitecol'). """
[docs] def add(self, key, cache=False): def decorator(func): self[key] = memoized(func) if cache else func return func return decorator
def __call__(self, dstore, key): if '/' in key: k, v = key.split('/', 1) data = self[k](dstore, v) elif '?' in key: k, v = key.split('?', 1) data = self[k](dstore, v) elif key in self: data = self[key](dstore, '') else: data = extract_(dstore, key) if isinstance(data, pandas.DataFrame): return data return ArrayWrapper.from_(data)
extract = Extract()
[docs]@extract.add('oqparam') def extract_oqparam(dstore, dummy): """ Extract job parameters as a JSON npz. Use it as /extract/oqparam """ js = hdf5.dumps(vars(dstore['oqparam'])) return ArrayWrapper((), {'json': js})
# used by the QGIS plugin in scenario
[docs]@extract.add('realizations') def extract_realizations(dstore, dummy): """ Extract an array of realizations. Use it as /extract/realizations """ dt = [('rlz_id', U32), ('branch_path', '<S100'), ('weight', F32)] oq = dstore['oqparam'] scenario = 'scenario' in oq.calculation_mode rlzs = dstore['full_lt'].rlzs # NB: branch_path cannot be of type hdf5.vstr otherwise the conversion # to .npz (needed by the plugin) would fail arr = numpy.zeros(len(rlzs), dt) arr['rlz_id'] = rlzs['ordinal'] arr['weight'] = rlzs['weight'] if scenario: gsims = dstore.getitem('full_lt/gsim_lt')['uncertainty'] if 'shakemap' in oq.inputs: gsims = ["[FromShakeMap]"] arr['branch_path'] = ['"%s"' % repr(gsim)[1:-1].replace('"', '""') for gsim in gsims] # quotes Excel-friendly else: arr['branch_path'] = rlzs['branch_path'] return arr
[docs]@extract.add('weights') def extract_weights(dstore, what): """ Extract the realization weights """ rlzs = dstore['full_lt'].get_realizations() return numpy.array([rlz.weight['weight'] for rlz in rlzs])
[docs]@extract.add('gsims_by_trt') def extract_gsims_by_trt(dstore, what): """ Extract the dictionary gsims_by_trt """ return ArrayWrapper((), dstore['full_lt'].gsim_lt.values)
[docs]@extract.add('exposure_metadata') def extract_exposure_metadata(dstore, what): """ Extract the loss categories and the tags of the exposure. Use it as /extract/exposure_metadata """ dic = {} dic1, dic2 = dstore['assetcol/tagcol'].__toh5__() dic.update(dic1) dic.update(dic2) if 'asset_risk' in dstore: dic['multi_risk'] = sorted( set(dstore['asset_risk'].dtype.names) - set(dstore['assetcol/array'].dtype.names)) dic['names'] = [name for name in dstore['assetcol/array'].dtype.names if name.startswith(('value-', 'number', 'occupants')) and name != 'value-occupants'] return ArrayWrapper((), dict(json=hdf5.dumps(dic)))
[docs]@extract.add('assets') def extract_assets(dstore, what): """ Extract an array of assets, optionally filtered by tag. Use it as /extract/assets?taxonomy=RC&taxonomy=MSBC&occupancy=RES """ qdict = parse(what) dic = {} dic1, dic2 = dstore['assetcol/tagcol'].__toh5__() dic.update(dic1) dic.update(dic2) arr = dstore['assetcol/array'][()] for tag, vals in qdict.items(): cond = numpy.zeros(len(arr), bool) for val in vals: tagidx, = numpy.where(dic[tag] == val) cond |= arr[tag] == tagidx arr = arr[cond] return ArrayWrapper(arr, dict(json=hdf5.dumps(dic)))
[docs]@extract.add('asset_risk') def extract_asset_risk(dstore, what): """ Extract an array of assets + risk fields, optionally filtered by tag. Use it as /extract/asset_risk?taxonomy=RC&taxonomy=MSBC&occupancy=RES """ qdict = parse(what) dic = {} dic1, dic2 = dstore['assetcol/tagcol'].__toh5__() dic.update(dic1) dic.update(dic2) arr = dstore['asset_risk'][()] names = list(arr.dtype.names) for i, name in enumerate(names): if name == 'id': names[i] = 'asset_id' # for backward compatibility arr.dtype.names = names for tag, vals in qdict.items(): cond = numpy.zeros(len(arr), bool) for val in vals: tagidx, = numpy.where(dic[tag] == val) cond |= arr[tag] == tagidx arr = arr[cond] return ArrayWrapper(arr, dict(json=hdf5.dumps(dic)))
[docs]@extract.add('asset_tags') def extract_asset_tags(dstore, tagname): """ Extract an array of asset tags for the given tagname. Use it as /extract/asset_tags or /extract/asset_tags/taxonomy """ tagcol = dstore['assetcol/tagcol'] if tagname: yield tagname, barray(tagcol.gen_tags(tagname)) for tagname in tagcol.tagnames: yield tagname, barray(tagcol.gen_tags(tagname))
[docs]def get_sites(sitecol, complete=True): """ :returns: a lon-lat or lon-lat-depth array depending if the site collection is at sea level or not; if there is a custom_site_id, prepend it """ sc = sitecol.complete if complete else sitecol if sc.at_sea_level(): fields = ['lon', 'lat'] else: fields = ['lon', 'lat', 'depth'] if 'custom_site_id' in sitecol.array.dtype.names: fields.insert(0, 'custom_site_id') return sitecol[fields]
[docs]def hazard_items(dic, sites, *extras, **kw): """ :param dic: dictionary of arrays of the same shape :param sites: a sites array with lon, lat fields of the same length :param extras: optional triples (field, dtype, values) :param kw: dictionary of parameters (like investigation_time) :returns: a list of pairs (key, value) suitable for storage in .npz format """ for item in kw.items(): yield item try: field = next(iter(dic)) except StopIteration: return arr = dic[field] dtlist = [(str(field), arr.dtype) for field in sorted(dic)] for field, dtype, values in extras: dtlist.append((str(field), dtype)) array = numpy.zeros(arr.shape, dtlist) for field in dic: array[field] = dic[field] for field, dtype, values in extras: array[field] = values yield 'all', util.compose_arrays(sites, array)
def _get_dict(dstore, name, imtls, stats): dic = {} dtlist = [] for imt, imls in imtls.items(): dt = numpy.dtype([(str(iml), F32) for iml in imls]) dtlist.append((imt, dt)) for s, stat in enumerate(stats): dic[stat] = dstore[name][:, s].flatten().view(dtlist) return dic
[docs]@extract.add('sitecol') def extract_sitecol(dstore, what): """ Extracts the site collection array (not the complete object, otherwise it would need to be pickled). Use it as /extract/sitecol?field=vs30 """ qdict = parse(what) if 'field' in qdict: [f] = qdict['field'] return dstore['sitecol'][f] return dstore['sitecol'].array
def _items(dstore, name, what, info): params = parse(what, info) filt = {} if 'site_id' in params: filt['site_id'] = params['site_id'][0] if 'imt' in params: [imt] = params['imt'] filt['imt'] = imt if params['rlzs']: for k in params['k']: filt['rlz_id'] = k yield 'rlz-%03d' % k, dstore.sel(name + '-rlzs', **filt)[:, 0] else: stats = list(info['stats']) for k in params['k']: filt['stat'] = stat = stats[k] yield stat, dstore.sel(name + '-stats', **filt)[:, 0] yield from params.items()
[docs]@extract.add('hcurves') def extract_hcurves(dstore, what): """ Extracts hazard curves. Use it as /extract/hcurves?kind=mean&imt=PGA or /extract/hcurves?kind=rlz-0&imt=SA(1.0) """ info = get_info(dstore) if what == '': # npz exports for QGIS sitecol = dstore['sitecol'] sites = get_sites(sitecol, complete=False) dic = _get_dict(dstore, 'hcurves-stats', info['imtls'], info['stats']) yield from hazard_items( dic, sites, investigation_time=info['investigation_time']) return yield from _items(dstore, 'hcurves', what, info)
[docs]@extract.add('hmaps') def extract_hmaps(dstore, what): """ Extracts hazard maps. Use it as /extract/hmaps?imt=PGA """ info = get_info(dstore) if what == '': # npz exports for QGIS sitecol = dstore['sitecol'] sites = get_sites(sitecol, complete=False) dic = _get_dict(dstore, 'hmaps-stats', {imt: info['poes'] for imt in info['imtls']}, info['stats']) yield from hazard_items( dic, sites, investigation_time=info['investigation_time']) return yield from _items(dstore, 'hmaps', what, info)
[docs]@extract.add('uhs') def extract_uhs(dstore, what): """ Extracts uniform hazard spectra. Use it as /extract/uhs?kind=mean or /extract/uhs?kind=rlz-0, etc """ info = get_info(dstore) if what == '': # npz exports for QGIS sitecol = dstore['sitecol'] sites = get_sites(sitecol, complete=False) dic = {} for stat, s in info['stats'].items(): hmap = dstore['hmaps-stats'][:, s] # shape (N, M, P) dic[stat] = calc.make_uhs(hmap, info) yield from hazard_items( dic, sites, investigation_time=info['investigation_time']) return for k, v in _items(dstore, 'hmaps', what, info): # shape (N, M, P) if hasattr(v, 'shape') and len(v.shape) == 3: yield k, calc.make_uhs(v, info) else: yield k, v
[docs]@extract.add('effect') def extract_effect(dstore, what): """ Extracts the effect of ruptures. Use it as /extract/effect """ grp = dstore['effect_by_mag_dst_trt'] dist_bins = dict(grp.attrs) ndists = len(dist_bins[next(iter(dist_bins))]) arr = numpy.zeros((len(grp), ndists, len(dist_bins))) for i, mag in enumerate(grp): arr[i] = dstore['effect_by_mag_dst_trt/' + mag][()] return ArrayWrapper(arr, dict(dist_bins=dist_bins, ndists=ndists, mags=[float(mag) for mag in grp]))
[docs]@extract.add('rups_by_mag_dist') def extract_rups_by_mag_dist(dstore, what): """ Extracts the number of ruptures by mag, dist. Use it as /extract/rups_by_mag_dist """ return extract_effect(dstore, 'rups_by_mag_dist')
[docs]@extract.add('source_data') def extract_source_data(dstore, what): """ Extract performance information about the sources. Use it as /extract/source_data? """ qdict = parse(what) if 'taskno' in qdict: sel = {'taskno': int(qdict['taskno'][0])} else: sel = {} df = dstore.read_df('source_data', 'src_id', sel=sel).sort_values('ctimes') dic = {col: df[col].to_numpy() for col in df.columns} return ArrayWrapper(df.index.to_numpy(), dic)
[docs]@extract.add('sources') def extract_sources(dstore, what): """ Extract information about a source model. Use it as /extract/sources?limit=10 or /extract/sources?source_id=1&source_id=2 or /extract/sources?code=A&code=B """ qdict = parse(what) limit = int(qdict.get('limit', ['100'])[0]) source_ids = qdict.get('source_id', None) if source_ids is not None: source_ids = [str(source_id) for source_id in source_ids] codes = qdict.get('code', None) if codes is not None: codes = [code.encode('utf8') for code in codes] fields = 'source_id code num_sites eff_ruptures' info = dstore['source_info'][()][fields.split()] wkt = decode(dstore['source_wkt'][()]) arrays = [] if source_ids is not None: logging.info('Extracting sources with ids: %s', source_ids) info = info[numpy.isin(info['source_id'], source_ids)] if len(info) == 0: raise getters.NotFound( 'There is no source with id %s' % source_ids) if codes is not None: logging.info('Extracting sources with codes: %s', codes) info = info[numpy.isin(info['code'], codes)] if len(info) == 0: raise getters.NotFound( 'There is no source with code in %s' % codes) for code, rows in general.group_array(info, 'code').items(): if limit < len(rows): logging.info('Code %s: extracting %d sources out of %s', code, limit, len(rows)) arrays.append(rows[:limit]) if not arrays: raise ValueError('There no sources') info = numpy.concatenate(arrays) wkt_gz = gzip.compress(';'.join(wkt).encode('utf8')) src_gz = gzip.compress(';'.join(decode(info['source_id'])).encode('utf8')) oknames = [name for name in info.dtype.names # avoid pickle issues if name not in ('source_id', 'trt_smrs')] arr = numpy.zeros(len(info), [(n, info.dtype[n]) for n in oknames]) for n in oknames: arr[n] = info[n] return ArrayWrapper(arr, {'wkt_gz': wkt_gz, 'src_gz': src_gz})
[docs]@extract.add('gridded_sources') def extract_gridded_sources(dstore, what): """ Extract information about the gridded sources (requires ps_grid_spacing) Use it as /extract/gridded_sources?task_no=0. Returns a json string id -> lonlats """ qdict = parse(what) task_no = int(qdict.get('task_no', ['0'])[0]) dic = {} for i, lonlats in enumerate(dstore['ps_grid/%02d' % task_no][()]): dic[i] = numpy.round(F64(lonlats), 3) return ArrayWrapper((), {'json': hdf5.dumps(dic)})
[docs]@extract.add('task_info') def extract_task_info(dstore, what): """ Extracts the task distribution. Use it as /extract/task_info?kind=classical """ dic = group_array(dstore['task_info'][()], 'taskname') if 'kind' in what: name = parse(what)['kind'][0] yield name, dic[encode(name)] return for name in dic: yield decode(name), dic[name]
def _agg(losses, idxs): shp = losses.shape[1:] if not idxs: # no intersection, return a 0-dim matrix return numpy.zeros((0,) + shp, losses.dtype) # numpy.array wants lists, not sets, hence the sorted below return losses[numpy.array(sorted(idxs))].sum(axis=0) def _filter_agg(assetcol, losses, selected, stats=''): # losses is an array of shape (A, ..., R) with A=#assets, R=#realizations aids_by_tag = assetcol.get_aids_by_tag() idxs = set(range(len(assetcol))) tagnames = [] for tag in selected: tagname, tagvalue = tag.split('=', 1) if tagvalue == '*': tagnames.append(tagname) else: idxs &= aids_by_tag[tag] if len(tagnames) > 1: raise ValueError('Too many * as tag values in %s' % tagnames) elif not tagnames: # return an array of shape (..., R) return ArrayWrapper( _agg(losses, idxs), dict(selected=encode(selected), stats=stats)) else: # return an array of shape (T, ..., R) [tagname] = tagnames _tags = list(assetcol.tagcol.gen_tags(tagname)) all_idxs = [idxs & aids_by_tag[t] for t in _tags] # NB: using a generator expression for all_idxs caused issues (?) data, tags = [], [] for idxs, tag in zip(all_idxs, _tags): agglosses = _agg(losses, idxs) if len(agglosses): data.append(agglosses) tags.append(tag) return ArrayWrapper( numpy.array(data), dict(selected=encode(selected), tags=encode(tags), stats=stats))
[docs]def get_loss_type_tags(what): try: loss_type, query_string = what.rsplit('?', 1) except ValueError: # no question mark loss_type, query_string = what, '' tags = query_string.split('&') if query_string else [] return loss_type, tags
# probably not used
[docs]@extract.add('csq_curves') def extract_csq_curves(dstore, what): """ Aggregate damages curves from the event_based_damage calculator: /extract/csq_curves?agg_id=0&loss_type=occupants Returns an ArrayWrapper of shape (P, D1) with attribute return_periods """ info = get_info(dstore) qdic = parse(what + '&kind=mean', info) [li] = qdic['loss_type'] # loss type index [agg_id] = qdic.get('agg_id', [0]) df = dstore.read_df('aggcurves', 'return_period', dict(agg_id=agg_id, loss_id=li)) cols = [col for col in df.columns if col not in 'agg_id loss_id'] return ArrayWrapper(df[cols].to_numpy(), dict(return_period=df.index.to_numpy(), consequences=cols))
[docs]@extract.add('agg_curves') def extract_agg_curves(dstore, what): """ Aggregate loss curves from the ebrisk calculator: /extract/agg_curves?kind=stats,absolute=1&loss_type=occupants&occupancy=RES Returns an array of shape (P, S, 1...) """ info = get_info(dstore) qdic = parse(what, info) tagdict = qdic.copy() for a in ('k', 'rlzs', 'kind', 'loss_type', 'absolute'): del tagdict[a] k = qdic['k'] # rlz or stat index lt = tagdict.pop('lt') # loss type string [l] = qdic['loss_type'] # loss type index tagnames = sorted(tagdict) if set(tagnames) != set(info['tagnames']): raise ValueError('Expected tagnames=%s, got %s' % (info['tagnames'], tagnames)) tagvalues = [tagdict[t][0] for t in tagnames] idx = -1 if tagnames: for i, tags in enumerate(dstore['agg_keys'][:][tagnames]): if decode([v for v in tags]) == tagvalues: idx = i break kinds = list(info['stats']) name = 'agg_curves-stats' units = dstore.get_attr(name, 'units') shape_descr = hdf5.get_shape_descr(dstore.get_attr(name, 'json')) units = dstore.get_attr(name, 'units') rps = shape_descr['return_period'] tup = (idx, k, l) arr = dstore[name][tup].T # shape P, R if qdic['absolute'] == [1]: pass elif qdic['absolute'] == [0]: evalue, = dstore['agg_values'][idx][lt] arr /= evalue else: raise ValueError('"absolute" must be 0 or 1 in %s' % what) attrs = dict(shape_descr=['return_period', 'kind'] + tagnames) attrs['return_period'] = list(rps) attrs['kind'] = kinds attrs['units'] = list(units) # used by the QGIS plugin for tagname, tagvalue in zip(tagnames, tagvalues): attrs[tagname] = [tagvalue] if tagnames: arr = arr.reshape(arr.shape + (1,) * len(tagnames)) return ArrayWrapper(arr, dict(json=hdf5.dumps(attrs)))
[docs]@extract.add('agg_losses') def extract_agg_losses(dstore, what): """ Aggregate losses of the given loss type and tags. Use it as /extract/agg_losses/structural?taxonomy=RC&custom_site_id=20126 /extract/agg_losses/structural?taxonomy=RC&custom_site_id=* :returns: an array of shape (T, R) if one of the tag names has a `*` value an array of shape (R,), being R the number of realizations an array of length 0 if there is no data for the given tags """ loss_type, tags = get_loss_type_tags(what) if not loss_type: raise ValueError('loss_type not passed in agg_losses/<loss_type>') L = dstore['oqparam'].lti[loss_type] if 'avg_losses-stats' in dstore: stats = list(dstore['oqparam'].hazard_stats()) losses = dstore['avg_losses-stats'][:, :, L] elif 'avg_losses-rlzs' in dstore: stats = ['mean'] losses = dstore['avg_losses-rlzs'][:, :, L] else: raise KeyError('No losses found in %s' % dstore) return _filter_agg(dstore['assetcol'], losses, tags, stats)
[docs]@extract.add('agg_damages') def extract_agg_damages(dstore, what): """ Aggregate damages of the given loss type and tags. Use it as /extract/agg_damages/structural?taxonomy=RC&custom_site_id=20126 :returns: array of shape (R, D), being R the number of realizations and D the number of damage states, or an array of length 0 if there is no data for the given tags """ loss_type, tags = get_loss_type_tags(what) if 'damages-rlzs' in dstore: oq = dstore['oqparam'] lti = oq.lti[loss_type] D = len(oq.limit_states) + 1 damages = dstore['damages-rlzs'][:, :, lti, :D] else: raise KeyError('No damages found in %s' % dstore) return _filter_agg(dstore['assetcol'], damages, tags)
[docs]@extract.add('aggregate') def extract_aggregate(dstore, what): """ /extract/aggregate/avg_losses? kind=mean&loss_type=structural&tag=taxonomy&tag=occupancy """ name, qstring = what.split('?', 1) info = get_info(dstore) qdic = parse(qstring, info) suffix = '-rlzs' if qdic['rlzs'] else '-stats' tagnames = qdic.get('tag', []) assetcol = dstore['assetcol'] loss_types = info['loss_types'] ltypes = qdic.get('loss_type', []) # list of indices if ltypes: lti = ltypes[0] lt = [lt for lt, i in loss_types.items() if i == lti] array = dstore[name + suffix][:, qdic['k'][0], lti] aw = ArrayWrapper(assetcol.aggregateby(tagnames, array), {}, lt) else: array = dstore[name + suffix][:, qdic['k'][0]] aw = ArrayWrapper(assetcol.aggregateby(tagnames, array), {}, loss_types) for tagname in tagnames: setattr(aw, tagname, getattr(assetcol.tagcol, tagname)[1:]) aw.shape_descr = tagnames return aw
[docs]@extract.add('losses_by_asset') def extract_losses_by_asset(dstore, what): loss_dt = dstore['oqparam'].loss_dt(F32) rlzs = dstore['full_lt'].get_realizations() assets = util.get_assets(dstore) if 'losses_by_asset' in dstore: losses_by_asset = dstore['losses_by_asset'][()] for rlz in rlzs: # I am exporting the 'mean' and ignoring the 'stddev' losses = cast(losses_by_asset[:, rlz.ordinal]['mean'], loss_dt) data = util.compose_arrays(assets, losses) yield 'rlz-%03d' % rlz.ordinal, data elif 'avg_losses-stats' in dstore: aw = hdf5.ArrayWrapper.from_(dstore['avg_losses-stats']) for s, stat in enumerate(aw.stat): losses = cast(aw[:, s], loss_dt) data = util.compose_arrays(assets, losses) yield stat, data elif 'avg_losses-rlzs' in dstore: # there is only one realization avg_losses = dstore['avg_losses-rlzs'][()] losses = cast(avg_losses, loss_dt) data = util.compose_arrays(assets, losses) yield 'rlz-000', data
def _gmf(df, num_sites, imts): # convert data into the composite array expected by QGIS gmfa = numpy.zeros(num_sites, [(imt, F32) for imt in imts]) for m, imt in enumerate(imts): gmfa[imt][U32(df.sid)] = df[f'gmv_{m}'] return gmfa # used by the QGIS plugin for a single eid
[docs]@extract.add('gmf_data') def extract_gmf_npz(dstore, what): oq = dstore['oqparam'] qdict = parse(what) [eid] = qdict.get('event_id', [0]) # there must be a single event rlzi = dstore['events'][eid]['rlz_id'] sites = get_sites(dstore['sitecol']) n = len(sites) try: df = dstore.read_df('gmf_data', 'eid').loc[eid] except KeyError: # zero GMF yield 'rlz-%03d' % rlzi, [] else: gmfa = _gmf(df, n, oq.imtls) yield 'rlz-%03d' % rlzi, util.compose_arrays(sites, gmfa)
[docs]@extract.add('avg_gmf') def extract_avg_gmf(dstore, what): qdict = parse(what) info = get_info(dstore) [imt] = qdict['imt'] imti = info['imt'][imt] sitecol = dstore['sitecol'] avg_gmf = dstore['avg_gmf'][0, :, imti] yield imt, avg_gmf[sitecol.sids] yield 'sids', sitecol.sids yield 'lons', sitecol.lons yield 'lats', sitecol.lats
[docs]@extract.add('num_events') def extract_num_events(dstore, what): """ :returns: the number of events (if any) """ yield 'num_events', len(dstore['events'])
[docs]def build_damage_dt(dstore): """ :param dstore: a datastore instance :returns: a composite dtype loss_type -> (ds1, ds2, ...) """ oq = dstore['oqparam'] attrs = json.loads(dstore.get_attr('damages-rlzs', 'json')) limit_states = list(dstore.get_attr('crm', 'limit_states')) csqs = attrs['dmg_state'][len(limit_states) + 1:] # consequences dt_list = [(ds, F32) for ds in ['no_damage'] + limit_states + csqs] damage_dt = numpy.dtype(dt_list) loss_types = oq.loss_dt().names return numpy.dtype([(lt, damage_dt) for lt in loss_types])
[docs]def build_csq_dt(dstore): """ :param dstore: a datastore instance :returns: a composite dtype loss_type -> (csq1, csq2, ...) """ oq = dstore['oqparam'] attrs = json.loads(dstore.get_attr('damages-rlzs', 'json')) limit_states = list(dstore.get_attr('crm', 'limit_states')) csqs = attrs['dmg_state'][len(limit_states) + 1:] # consequences dt = numpy.dtype([(csq, F32) for csq in csqs]) loss_types = oq.loss_dt().names return numpy.dtype([(lt, dt) for lt in loss_types])
[docs]def build_damage_array(data, damage_dt): """ :param data: an array of shape (A, L, D) :param damage_dt: a damage composite data type loss_type -> states :returns: a composite array of length N and dtype damage_dt """ A, L, D = data.shape dmg = numpy.zeros(A, damage_dt) for a in range(A): for li, lt in enumerate(damage_dt.names): dmg[lt][a] = tuple(data[a, li]) return dmg
[docs]@extract.add('damages-rlzs') def extract_damages_npz(dstore, what): oq = dstore['oqparam'] damage_dt = build_damage_dt(dstore) rlzs = dstore['full_lt'].get_realizations() if oq.collect_rlzs: rlzs = [Mock(ordinal=0)] data = dstore['damages-rlzs'] assets = util.get_assets(dstore) for rlz in rlzs: damages = build_damage_array(data[:, rlz.ordinal], damage_dt) yield 'rlz-%03d' % rlz.ordinal, util.compose_arrays( assets, damages)
[docs]@extract.add('event_based_mfd') def extract_mfd(dstore, what): """ Display num_ruptures by magnitude for event based calculations. Example: http://127.0.0.1:8800/v1/calc/30/extract/event_based_mfd?kind=mean """ oq = dstore['oqparam'] qdic = parse(what) kind_mean = 'mean' in qdic.get('kind', []) kind_by_group = 'by_group' in qdic.get('kind', []) full_lt = dstore['full_lt'] weights = [sm.weight for sm in full_lt.sm_rlzs] n = len(weights) duration = oq.investigation_time * oq.ses_per_logic_tree_path dic = {'duration': duration} dd = collections.defaultdict(float) rups = dstore['ruptures']['trt_smr', 'mag', 'n_occ'] mags = sorted(numpy.unique(rups['mag'])) magidx = {mag: idx for idx, mag in enumerate(mags)} num_groups = rups['trt_smr'].max() + 1 frequencies = numpy.zeros((len(mags), num_groups), float) for trt_smr, mag, n_occ in rups: if kind_mean: dd[mag] += n_occ * weights[trt_smr % n] / duration if kind_by_group: frequencies[magidx[mag], trt_smr] += n_occ / duration dic['magnitudes'] = numpy.array(mags) if kind_mean: dic['mean_frequency'] = numpy.array([dd[mag] for mag in mags]) if kind_by_group: for trt_smr, freqs in enumerate(frequencies.T): dic['grp-%02d_frequency' % trt_smr] = freqs return ArrayWrapper((), dic)
# NB: this is an alternative, slower approach giving exactly the same numbers; # it is kept here for sake of comparison in case of dubious MFDs # @extract.add('event_based_mfd') # def extract_mfd(dstore, what): # oq = dstore['oqparam'] # rlzs = dstore['full_lt'].get_realizations() # weights = [rlz.weight['default'] for rlz in rlzs] # duration = oq.investigation_time * oq.ses_per_logic_tree_path # mag = dict(dstore['ruptures']['rup_id', 'mag']) # mags = numpy.unique(dstore['ruptures']['mag']) # mags.sort() # magidx = {mag: idx for idx, mag in enumerate(mags)} # occurrences = numpy.zeros((len(mags), len(weights)), numpy.uint32) # events = dstore['events'][()] # dic = {'duration': duration, 'magnitudes': mags, # 'mean_frequencies': numpy.zeros(len(mags))} # for rlz, weight in enumerate(weights): # eids = get_array(events, rlz=rlz)['id'] # if len(eids) == 0: # continue # rupids, n_occs = numpy.unique(eids // 2 ** 32, return_counts=True) # for rupid, n_occ in zip(rupids, n_occs): # occurrences[magidx[mag[rupid]], rlz] += n_occ # dic['mean_frequencies'] += occurrences[:, rlz] * weight / duration # return ArrayWrapper(occurrences, dic)
[docs]@extract.add('mean_std_curves') def extract_mean_std_curves(dstore, what): """ Yield imls/IMT and poes/IMT containg mean and stddev for all sites """ rlzs = dstore['full_lt'].get_realizations() w = [rlz.weight for rlz in rlzs] getter = getters.PmapGetter(dstore, w) arr = getter.get_mean().array for imt in getter.imtls: yield 'imls/' + imt, getter.imtls[imt] yield 'poes/' + imt, arr[:, getter.imtls(imt)]
[docs]@extract.add('composite_risk_model.attrs') def crm_attrs(dstore, what): """ :returns: the attributes of the risk model, i.e. limit_states, loss_types, min_iml and covs, needed by the risk exporters. """ attrs = dstore.get_attrs('crm') return ArrayWrapper((), dict(json=hdf5.dumps(attrs)))
def _get(dstore, name): try: dset = dstore[name + '-stats'] return dset, list(dstore['oqparam'].hazard_stats()) except KeyError: # single realization return dstore[name + '-rlzs'], ['mean']
[docs]@extract.add('events') def extract_relevant_events(dstore, dummy=None): """ Extract the relevant events Example: http://127.0.0.1:8800/v1/calc/30/extract/events """ events = dstore['events'][:] if 'relevant_events' not in dstore: return events rel_events = dstore['relevant_events'][:] return events[rel_events]
[docs]@extract.add('event_info') def extract_event_info(dstore, eidx): """ Extract information about the given event index. Example: http://127.0.0.1:8800/v1/calc/30/extract/event_info/0 """ event = dstore['events'][int(eidx)] ridx = event['rup_id'] [getter] = getters.get_rupture_getters(dstore, slc=slice(ridx, ridx + 1)) rupdict = getter.get_rupdict() rlzi = event['rlz_id'] full_lt = dstore['full_lt'] rlz = full_lt.get_realizations()[rlzi] gsim = full_lt.gsim_by_trt(rlz)[rupdict['trt']] for key, val in rupdict.items(): yield key, val yield 'rlzi', rlzi yield 'gsim', repr(gsim)
[docs]@extract.add('extreme_event') def extract_extreme_event(dstore, eidx): """ Extract information about the given event index. Example: http://127.0.0.1:8800/v1/calc/30/extract/extreme_event """ arr = dstore['gmf_data/gmv_0'][()] idx = arr.argmax() eid = dstore['gmf_data/eid'][idx] dic = dict(extract_event_info(dstore, eid)) dic['gmv'] = arr[idx] return dic
[docs]@extract.add('ruptures_within') def get_ruptures_within(dstore, bbox): """ Extract the ruptures within the given bounding box, a string minlon,minlat,maxlon,maxlat. Example: http://127.0.0.1:8800/v1/calc/30/extract/ruptures_with/8,44,10,46 """ minlon, minlat, maxlon, maxlat = map(float, bbox.split(',')) hypo = dstore['ruptures']['hypo'].T # shape (3, N) mask = ((minlon <= hypo[0]) * (minlat <= hypo[1]) * (maxlon >= hypo[0]) * (maxlat >= hypo[1])) return dstore['ruptures'][mask]
[docs]@extract.add('disagg') def extract_disagg(dstore, what): """ Extract a disaggregation output as a 2D array. Example: http://127.0.0.1:8800/v1/calc/30/extract/ disagg?kind=Mag_Dist&imt=PGA&poe_id=0&site_id=1&traditional=1 """ qdict = parse(what) label = qdict['kind'][0] imt = qdict['imt'][0] poe_id = int(qdict['poe_id'][0]) sid = int(qdict['site_id'][0]) traditional = qdict.get('traditional') def get(v, sid): if len(v.shape) == 2: return v[sid] return v[:] oq = dstore['oqparam'] imt2m = {imt: m for m, imt in enumerate(oq.imtls)} bins = {k: get(v, sid) for k, v in dstore['disagg-bins'].items()} m = imt2m[imt] matrix = dstore['disagg/' + label][sid, m, poe_id] # shape (..., Z) poe_agg = dstore['poe4'][sid, m, poe_id] Z = len(poe_agg) if traditional and traditional != '0': if matrix.any(): # nonzero matrix = numpy.log(1. - matrix) / numpy.log(1. - poe_agg) # adapted from the nrml_converters disag_tup = tuple(label.split('_')) axis = [bins[k] for k in disag_tup] # compute axis mid points axis = [(ax[: -1] + ax[1:]) / 2. if ax.dtype == float else ax for ax in axis] if len(axis) == 1: # i.e. Mag or Dist values = numpy.array([axis[0]] + list(matrix.T)) # i.e. shape (2, 3) else: # i.e. Mag_Dist # axis = [[5.5, 6.5, 7.5], [12.5, 37.5, 62.5, 87.5]] grids = numpy.meshgrid(*axis, indexing='ij') # with the 2 axis above there are 2 grids of shape (3, 4) each values = [g.flatten() for g in grids] + [matrix[..., z].flatten() for z in range(Z)] # list of arrays of lenghts [12, 12, 12] values = numpy.array(values) # shape (3, 12) attrs = qdict.copy() for k in disag_tup: attrs[k] = bins[k] attrs['kind'] = disag_tup attrs['rlzs'] = dstore['best_rlzs'][sid] weights = numpy.array([dstore['weights'][r] for r in attrs['rlzs']]) weights /= weights.sum() attrs['weights'] = weights return ArrayWrapper(values.T, attrs)
def _disagg_output_dt(shapedic, disagg_outputs, imts, poes_disagg): dt = [('site_id', U32), ('lon', F32), ('lat', F32), ('lon_bins', (F32, shapedic['lon'] + 1)), ('lat_bins', (F32, shapedic['lat'] + 1))] Z = shapedic['Z'] for out in disagg_outputs: shp = tuple(shapedic[key] for key in out.lower().split('_')) for imt in imts: for poe in poes_disagg: dt.append(('%s-%s-%s' % (out, imt, poe), (F32, shp))) for imt in imts: for poe in poes_disagg: dt.append(('iml-%s-%s' % (imt, poe), (F32, (Z,)))) return dt
[docs]def norm(qdict, params): dic = {} for par in params: dic[par] = int(qdict[par][0]) if par in qdict else 0 return dic
[docs]@extract.add('disagg_by_src') def extract_disagg_by_src(dstore, what): """ Extract the disagg_by_src information Example: http://127.0.0.1:8800/v1/calc/30/extract/disagg_by_src?site_id=0&imt_id=0&rlz_id=0&lvl_id=-1 """ qdict = parse(what) dic = hdf5.get_shape_descr(dstore['disagg_by_src'].attrs['json']) src_id = dic['src_id'] f = norm(qdict, 'site_id rlz_id lvl_id imt_id'.split()) poe = dstore['disagg_by_src'][ f['site_id'], f['rlz_id'], f['imt_id'], f['lvl_id']] arr = numpy.zeros(len(src_id), [('src_id', '<S16'), ('poe', '<f8')]) arr['src_id'] = src_id arr['poe'] = poe arr.sort(order='poe') return ArrayWrapper(arr[::-1], dict(json=hdf5.dumps(f)))
[docs]@extract.add('disagg_layer') def extract_disagg_layer(dstore, what): """ Extract a disaggregation layer containing all sites and outputs Example: http://127.0.0.1:8800/v1/calc/30/extract/disagg_layer? """ qdict = parse(what) oq = dstore['oqparam'] oq.maximum_distance = filters.IntegrationDistance(oq.maximum_distance) if 'kind' in qdict: kinds = qdict['kind'] else: kinds = oq.disagg_outputs sitecol = dstore['sitecol'] poes_disagg = oq.poes_disagg or (None,) edges, shapedic = disagg.get_edges_shapedic( oq, sitecol, dstore['source_mags']) dt = _disagg_output_dt(shapedic, kinds, oq.imtls, poes_disagg) out = numpy.zeros(len(sitecol), dt) realizations = numpy.array(dstore['full_lt'].get_realizations()) hmap4 = dstore['hmap4'][:] best_rlzs = dstore['best_rlzs'][:] arr = {kind: dstore['disagg/' + kind][:] for kind in kinds} for sid, lon, lat, rec in zip( sitecol.sids, sitecol.lons, sitecol.lats, out): rlzs = realizations[best_rlzs[sid]] rec['site_id'] = sid rec['lon'] = lon rec['lat'] = lat rec['lon_bins'] = edges[2][sid] rec['lat_bins'] = edges[3][sid] for m, imt in enumerate(oq.imtls): ws = numpy.array([rlz.weight[imt] for rlz in rlzs]) ws /= ws.sum() # normalize to 1 for p, poe in enumerate(poes_disagg): for kind in kinds: key = '%s-%s-%s' % (kind, imt, poe)
[docs] rec[key] = arr[kind][sid, m, p] @ ws rec['iml-%s-%s' % (imt, poe)] = hmap4[sid, m, p] return ArrayWrapper(out, dict(mag=edges[0], dist=edges[1], eps=edges[-2], trt=numpy.array(encode(edges[-1]))))
# ######################### extracting ruptures ############################## class RuptureData(object): """ Container for information about the ruptures of a given tectonic region type. """ def __init__(self, trt, gsims): self.trt = trt self.cmaker = ContextMaker(trt, gsims, {'imtls': {}}) self.params = sorted(self.cmaker.REQUIRES_RUPTURE_PARAMETERS - set('mag strike dip rake hypo_depth'.split())) self.dt = numpy.dtype([ ('rup_id', U32), ('source_id', SOURCE_ID), ('multiplicity', U32), ('occurrence_rate', F64), ('mag', F32), ('lon', F32), ('lat', F32), ('depth', F32), ('strike', F32), ('dip', F32), ('rake', F32), ('boundaries', hdf5.vfloat32)] + [(param, F32) for param in self.params])
[docs] def to_array(self, proxies): """ Convert a list of rupture proxies into an array of dtype RuptureRata.dt """ data = [] for proxy in proxies: ebr = proxy.to_ebr(self.trt) rup = ebr.rupture ctx = self.cmaker.make_rctx(rup) ruptparams = tuple(getattr(ctx, param) for param in self.params) point = rup.surface.get_middle_point() boundaries = rup.surface.get_surface_boundaries_3d() try: rate = ebr.rupture.occurrence_rate except AttributeError: # for nonparametric sources rate = numpy.nan data.append( (ebr.id, ebr.source_id, ebr.n_occ, rate, rup.mag, point.x, point.y, point.z, rup.surface.get_strike(), rup.surface.get_dip(), rup.rake, boundaries) + ruptparams) return numpy.array(data, self.dt)
[docs]@extract.add('rupture_info') def extract_rupture_info(dstore, what): """ Extract some information about the ruptures, including the boundary. Example: http://127.0.0.1:8800/v1/calc/30/extract/rupture_info?min_mag=6 """ qdict = parse(what) if 'min_mag' in qdict: [min_mag] = qdict['min_mag'] else: min_mag = 0 oq = dstore['oqparam'] dtlist = [('rup_id', U32), ('multiplicity', U32), ('mag', F32), ('centroid_lon', F32), ('centroid_lat', F32), ('centroid_depth', F32), ('trt', '<S50'), ('strike', F32), ('dip', F32), ('rake', F32)] rows = [] boundaries = [] for rgetter in getters.get_rupture_getters(dstore): proxies = rgetter.get_proxies(min_mag) rup_data = RuptureData(rgetter.trt, rgetter.rlzs_by_gsim) for r in rup_data.to_array(proxies): coords = ['%.5f %.5f' % xyz[:2] for xyz in zip(*r['boundaries'])] coordset = sorted(set(coords)) if len(coordset) < 4: # degenerate to line boundaries.append('LINESTRING(%s)' % ', '.join(coordset)) else: # good polygon boundaries.append('POLYGON((%s))' % ', '.join(coords)) rows.append( (r['rup_id'], r['multiplicity'], r['mag'], r['lon'], r['lat'], r['depth'], rgetter.trt, r['strike'], r['dip'], r['rake'])) arr = numpy.array(rows, dtlist) geoms = gzip.compress('\n'.join(boundaries).encode('utf-8')) return ArrayWrapper(arr, dict(investigation_time=oq.investigation_time, boundaries=geoms))
[docs]@extract.add('ruptures') def extract_ruptures(dstore, what): """ Extract the ruptures with their geometry as a big CSV string Example: http://127.0.0.1:8800/v1/calc/30/extract/ruptures?min_mag=6 """ qdict = parse(what) if 'min_mag' in qdict: [min_mag] = qdict['min_mag'] else: min_mag = 0 bio = io.StringIO() first = True trts = list(dstore.getitem('full_lt').attrs['trts']) for rgetter in getters.get_rupture_getters(dstore): rups = [rupture._get_rupture(proxy.rec, proxy.geom, rgetter.trt) for proxy in rgetter.get_proxies(min_mag)] arr = rupture.to_csv_array(rups) if first: header = None comment = dict(trts=trts) first = False else: header = 'no-header' comment = None writers.write_csv(bio, arr, header=header, comment=comment) return bio.getvalue()
[docs]@extract.add('eids_by_gsim') def extract_eids_by_gsim(dstore, what): """ Returns a dictionary gsim -> event_ids for the first TRT Example: http://127.0.0.1:8800/v1/calc/30/extract/eids_by_gsim """ rlzs = dstore['full_lt'].get_realizations() gsims = [str(rlz.gsim_rlz.value[0]) for rlz in rlzs] evs = extract_relevant_events(dstore) df = pandas.DataFrame({'id': evs['id'], 'rlz_id': evs['rlz_id']}) for r, evs in df.groupby('rlz_id'): yield gsims[r], numpy.array(evs['id'])
[docs]@extract.add('risk_stats') def extract_risk_stats(dstore, what): """ Extract the risk statistics from a DataFrame. Example: http://127.0.0.1:8800/v1/calc/30/extract/risk_stats/aggcurves """ oq = dstore['oqparam'] stats = oq.hazard_stats() df = dstore.read_df(what) df['loss_type'] = [oq.loss_types[lid] for lid in df.loss_id] del df['loss_id'] kfields = [f for f in df.columns if f in { 'agg_id', 'loss_type', 'return_period'}] weights = dstore['weights'][:] return calc_stats(df, kfields, stats, weights)
# ##################### extraction from the WebAPI ###################### #
[docs]class WebAPIError(RuntimeError): """ Wrapper for an error on a WebAPI server """
[docs]class Extractor(object): """ A class to extract data from a calculation. :param calc_id: a calculation ID NB: instantiating the Extractor opens the datastore. """ def __init__(self, calc_id): self.dstore = datastore.read(calc_id) self.calc_id = self.dstore.calc_id self.oqparam = self.dstore['oqparam']
[docs] def get(self, what, asdict=False): """ :param what: what to extract :returns: an ArrayWrapper instance or a dictionary if asdict is True """ aw = extract(self.dstore, what) if asdict: return {k: v for k, v in vars(aw).items() if not k.startswith('_')} return aw
def __enter__(self): return self def __exit__(self, *args): self.close()
[docs] def close(self): """ Close the datastore """ self.dstore.close()
[docs]class WebExtractor(Extractor): """ A class to extract data from the WebAPI. :param calc_id: a calculation ID :param server: hostname of the webapi server (can be '') :param username: login username (can be '') :param password: login password (can be '') NB: instantiating the WebExtractor opens a session. """ def __init__(self, calc_id, server=None, username=None, password=None): self.calc_id = calc_id self.server = config.webapi.server if server is None else server if username is None: username = config.webapi.username if password is None: password = config.webapi.password self.sess = requests.Session() if username: login_url = '%s/accounts/ajax_login/' % self.server logging.info('POST %s', login_url) resp = self.sess.post( login_url, data=dict(username=username, password=password)) if resp.status_code != 200: raise WebAPIError(resp.text) url = '%s/v1/calc/%d/extract/oqparam' % (self.server, calc_id) logging.info('GET %s', url) resp = self.sess.get(url) if resp.status_code == 404: raise WebAPIError('Not Found: %s' % url) elif resp.status_code != 200: raise WebAPIError(resp.text) self.oqparam = object.__new__(oqvalidation.OqParam) js = bytes(numpy.load(io.BytesIO(resp.content))['json']) vars(self.oqparam).update(json.loads(js))
[docs] def get(self, what): """ :param what: what to extract :returns: an ArrayWrapper instance """ url = '%s/v1/calc/%d/extract/%s' % (self.server, self.calc_id, what) logging.info('GET %s', url) resp = self.sess.get(url) if resp.status_code != 200: raise WebAPIError(resp.text) logging.info('Read %s of data' % general.humansize(len(resp.content))) npz = numpy.load(io.BytesIO(resp.content)) attrs = {k: npz[k] for k in npz if k != 'array'} try: arr = npz['array'] except KeyError: arr = () return ArrayWrapper(arr, attrs)
[docs] def dump(self, fname): """ Dump the remote datastore on a local path. """ url = '%s/v1/calc/%d/datastore' % (self.server, self.calc_id) resp = self.sess.get(url, stream=True) down = 0 with open(fname, 'wb') as f: logging.info('Saving %s', fname) for chunk in resp.iter_content(CHUNKSIZE): f.write(chunk) down += len(chunk) println('Downloaded {:,} bytes'.format(down)) print()
[docs] def close(self): """ Close the session """ self.sess.close()
[docs]def clusterize(hmaps, rlzs, k): """ :param hmaps: array of shape (R, M, P) :param rlzs: composite array of shape R :param k: number of clusters to build :returns: (array(K, MP), labels(R)) """ R, M, P = hmaps.shape hmaps = hmaps.transpose(0, 2, 1).reshape(R, M * P) dt = [('label', U32), ('branch_paths', object), ('centroid', (F32, M*P))] centroid, labels = kmeans2(hmaps, k, minit='++') dic = dict(path=rlzs['branch_path'], label=labels) df = pandas.DataFrame(dic) tbl = [] for label, grp in df.groupby('label'): paths = [encode(path) for path in grp['path']] tbl.append((label, logictree.collect_paths(paths), centroid[label])) return numpy.array(tbl, dt), labels
[docs]def read_ebrupture(dstore, rup_id): """ :param dstore: a DataStore instance :param rup_id: an integer rupture ID :returns: an EBRupture instance """ [getter] = getters.get_rupture_getters( dstore, slc=slice(rup_id, rup_id + 1)) [proxy] = getter.get_proxies() return proxy.to_ebr(getter.trt)