Source code for openquake.hazardlib.stats

#  -*- coding: utf-8 -*-
#  vim: tabstop=4 shiftwidth=4 softtabstop=4

#  Copyright (c) 2016-2017 GEM Foundation

#  OpenQuake is free software: you can redistribute it and/or modify it
#  under the terms of the GNU Affero General Public License as published
#  by the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.

#  OpenQuake is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU Affero General Public License for more details.

#  You should have received a copy of the GNU Affero General Public License
#  along with OpenQuake.  If not, see <http://www.gnu.org/licenses/>.
"""
Utilities to compute mean and quantile curves
"""
import numpy


[docs]def mean_curve(values, weights=None): """ Compute the mean by using numpy.average on the first axis. """ if weights is None: weights = [1. / len(values)] * len(values) if isinstance(values[0], (numpy.ndarray, list, tuple)): # fast lane return numpy.average(values, axis=0, weights=weights) return sum(value * weight for value, weight in zip(values, weights))
[docs]def quantile_curve(curves, quantile, weights=None): """ Compute the weighted quantile aggregate of a set of curves when using the logic tree end-branch enumeration approach, or just the standard quantile when using the sampling approach. :param curves: 2D array-like of curve PoEs. Each row represents the PoEs for a single curve :param quantile: Quantile value to calculate. Should be in the range [0.0, 1.0]. :param weights: Array-like of weights, 1 for each input curve, or None :returns: A numpy array representing the quantile aggregate """ assert len(curves) if weights is None: # this implementation is an alternative to # numpy.array(mstats.mquantiles(curves, prob=quantile, axis=0))[0] # more or less copied from the scipy mquantiles function, just special # cased for what we need (and a lot faster) arr = numpy.array(curves).reshape(len(curves), -1) p = numpy.array(quantile) m = 0.4 + p * 0.2 n = len(arr) aleph = n * p + m k = numpy.floor(aleph.clip(1, n - 1)).astype(int) gamma = (aleph - k).clip(0, 1) data = numpy.sort(arr, axis=0).transpose() qcurve = (1.0 - gamma) * data[:, k - 1] + gamma * data[:, k] return qcurve # Each curve needs to be associated with a weight assert len(weights) == len(curves) weights = numpy.array(weights) result_curve = [] np_curves = numpy.array(curves).reshape(len(curves), -1) np_weights = numpy.array(weights) for poes in np_curves.transpose(): sorted_poe_idxs = numpy.argsort(poes) sorted_weights = np_weights[sorted_poe_idxs] sorted_poes = poes[sorted_poe_idxs] cum_weights = numpy.cumsum(sorted_weights) result_curve.append(numpy.interp(quantile, cum_weights, sorted_poes)) shape = getattr(curves[0], 'shape', None) if shape: # passed a sequence of arrays return numpy.array(result_curve).reshape(shape) else: # passed a sequence of numbers return result_curve
# NB: this is a function linear in the array argument
[docs]def compute_stats(array, quantiles, weights): """ :param array: an array of R elements (which can be arrays) :param quantiles: a list of Q quantiles :param weights: a list of R weights :returns: an array of Q + 1 elements (which can be arrays) """ result = numpy.zeros((len(quantiles) + 1,) + array.shape[1:], array.dtype) result[0] = mean_curve(array, weights) shp = result[0].shape for i, q in enumerate(quantiles, 1): qc = quantile_curve(array, q, weights) # TODO: try to simplify the ugliness below if isinstance(qc, list) and len(qc) == 1: result[i] = qc[0] elif qc.shape != shp: result[i] = qc.reshape(shp) else: result[i] = qc return result
# like compute_stats, but on a matrix of shape (N, R)
[docs]def compute_stats2(arrayNR, quantiles, weights): """ :param arrayNR: an array of (N, R) elements :param quantiles: a list of Q quantiles :param weights: a list of R weights :returns: an array of (N, Q + 1) elements """ newshape = list(arrayNR.shape) newshape[1] = len(quantiles) + 1 # number of statistical outputs newarray = numpy.zeros(newshape, arrayNR.dtype) data = [arrayNR[:, i] for i in range(len(weights))] newarray[:, 0] = apply_stat(mean_curve, data, weights) for i, q in enumerate(quantiles, 1): newarray[:, i] = apply_stat(quantile_curve, data, q, weights) return newarray
[docs]def apply_stat(f, arraylist, *extra, **kw): """ :param f: a callable arraylist -> array (of the same shape and dtype) :param arraylist: a list of arrays of the same shape and dtype :param extra: additional positional arguments :param kw: keyword arguments :returns: an array of the same shape and dtype Broadcast statistical functions to composite arrays. Here is an example: >>> dt = numpy.dtype([('a', (float, 2)), ('b', float)]) >>> a1 = numpy.array([([1, 2], 3)], dt) >>> a2 = numpy.array([([4, 5], 6)], dt) >>> apply_stat(mean_curve, [a1, a2]) array([([2.5, 3.5], 4.5)], dtype=[('a', '<f8', (2,)), ('b', '<f8')]) """ dtype = arraylist[0].dtype shape = arraylist[0].shape if dtype.names: # composite array new = numpy.zeros(shape, dtype) for name in dtype.names: new[name] = f([arr[name] for arr in arraylist], *extra, **kw) return new else: # simple array return f(arraylist, *extra, **kw)