Source code for openquake.hazardlib.gsim.faccioli_2010

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2012-2016 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.

"""
Module exports :class:`FaccioliEtAl2010`.
"""
from __future__ import division

import numpy as np
# standard acceleration of gravity in m/s**2
from scipy.constants import g

from openquake.hazardlib.gsim.base import CoeffsTable
from openquake.hazardlib.gsim.cauzzi_faccioli_2008 import CauzziFaccioli2008
from openquake.hazardlib.imt import PGA, SA


[docs]class FaccioliEtAl2010(CauzziFaccioli2008): """ Implements GMPE developed by Ezio Faccioli, Aldo Bianchini and Manuela Villani and published as "New ground motion prediction equations for T>1 s and their influence on seismic hazard assessment" (Proceedings of the University of Tokyo Symposium on Long-Period Ground Motion and Urban Disaster Mitigation, March 17-18, 2010). This class implements the prediction equations for horizontal peak ground acceleration, and 5%-damped spectral acceleration - equation 2 page 2, plus site and faulting style terms (equations 3 and 5, page 3). Spectral acceleration (SA) values are obtained from displacement response spectrum (DSR) values (as provided by the original equations) using the following formula :: SA = DSR * (2 * π / T) ** 2 This class extends :class: `~openquake.hazardlib.gsim.cauzzi_faccioli_2008.CauzziFaccioli2008` because the functional form is almost identical - the only difference is in the third term which rather then using hypocentral distance, uses closest distance to the rupture and additionaly considers a magnitude dependence. """ #: Supported intensity measure types are spectral acceleration, #: and peak ground acceleration, see table 1, page 7. DEFINED_FOR_INTENSITY_MEASURE_TYPES = set([ PGA, SA ]) #: Required distance measure is rrup, equation 2, page 2. REQUIRES_DISTANCES = set(('rrup', )) def _compute_mean(self, C, mag, dists, vs30, rake, imt): """ Return mean value computed using equation 2, page 2, plus site term and faulting style term, equations 3 and 5, page 3. """ mean = (self._compute_term_1_2(C, mag) + self._compute_term_3(C, dists.rrup, mag) + self._compute_site_term(C, vs30) + self._compute_faulting_style_term(C, rake)) # convert from cm/s**2 to g for SA and from m/s**2 to g for PGA, # and also convert from base 10 to base e. if isinstance(imt, PGA): mean = np.log((10 ** mean) / g) elif isinstance(imt, SA): mean = np.log((10 ** mean) * ((2 * np.pi / imt.period) ** 2) * 1e-2 / g) return mean def _compute_term_3(self, C, rrup, mag): """ This computes the third term in equation 2, page 2. """ return (C['a3'] * np.log10(rrup + C['a4'] * np.power(10, C['a5'] * mag))) #: Coefficient table as from table 1 page 7 COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT a1 a2 a3 a4 a5 aB aC aD aN aR aS sigma pga -1.1800 0.5590 -1.6240 0.0180 0.4450 0.2500 0.3100 0.3300 -0.0100 0.0900 -0.0500 0.3600 0.05 -2.9600 0.6040 -1.8780 0.0520 0.3960 0.2000 0.2100 0.1800 -0.0200 0.0800 -0.0300 0.3800 0.10 -2.0200 0.5590 -1.8370 0.0700 0.3730 0.2600 0.2400 0.1900 0.0100 0.0800 -0.0500 0.4000 0.20 -1.9700 0.5270 -1.5120 0.0310 0.3910 0.3000 0.4200 0.4000 0.0400 0.0500 -0.0500 0.4000 0.30 -2.1100 0.5700 -1.4210 0.0090 0.4590 0.2300 0.4200 0.4500 0.0200 0.0300 -0.0300 0.4000 0.40 -2.2300 0.5960 -1.3550 0.0050 0.4780 0.1900 0.4200 0.5300 0.0400 0.0100 -0.0200 0.4100 0.50 -2.3500 0.6130 -1.2950 0.0010 0.5560 0.2000 0.4200 0.6200 0.0500 0.0000 -0.0200 0.4100 0.60 -2.4600 0.6410 -1.2820 0.0010 0.5660 0.1900 0.4200 0.6800 0.0600 -0.0100 -0.0200 0.4100 0.70 -2.5000 0.6640 -1.2930 0.0010 0.5800 0.1700 0.4200 0.7000 0.0700 -0.0200 -0.0200 0.4100 0.80 -2.5700 0.6930 -1.3130 0.0020 0.5360 0.1700 0.4100 0.7200 0.0600 -0.0300 -0.0100 0.4000 0.90 -2.6300 0.7170 -1.3340 0.0030 0.5260 0.1700 0.4200 0.7300 0.0700 -0.0400 -0.0100 0.4000 1.00 -2.6800 0.7310 -1.3350 0.0020 0.5290 0.1700 0.4200 0.7200 0.0800 -0.0400 -0.0100 0.4000 1.25 -2.8400 0.7670 -1.3200 0.0010 0.5810 0.1600 0.4000 0.6700 0.0900 -0.0500 -0.0100 0.4000 1.50 -2.9500 0.8010 -1.3420 0.0020 0.5290 0.1500 0.3900 0.6300 0.0900 -0.0500 -0.0100 0.4000 2.00 -3.0900 0.8700 -1.4240 0.0180 0.4230 0.1200 0.3400 0.5500 0.0400 -0.0400 0.0100 0.4000 2.50 -3.1400 0.9040 -1.4540 0.0780 0.3420 0.1100 0.3100 0.5000 0.0200 -0.0300 0.0100 0.3900 3.00 -3.2000 0.9330 -1.4700 0.2620 0.2720 0.1100 0.2900 0.4900 0.0200 -0.0200 0.0000 0.3800 4.00 -3.4900 1.0140 -1.4960 0.3870 0.2680 0.1100 0.2700 0.4400 0.0100 -0.0300 0.0100 0.3700 5.00 -3.7100 1.0690 -1.4970 0.5270 0.2600 0.1000 0.2400 0.3900 0.0100 -0.0500 0.0200 0.3600 7.50 -4.1500 1.0970 -1.3200 0.4550 0.2660 0.0900 0.2200 0.3400 0.0400 -0.0900 0.0400 0.3300 10.00 -4.2800 1.0680 -1.1870 0.2100 0.2980 0.0800 0.2000 0.3200 0.0500 -0.1100 0.0400 0.3100 15.00 -4.1700 1.0210 -1.1430 0.0890 0.3340 0.0900 0.1900 0.3200 0.0700 -0.1100 0.0400 0.2900 20.00 -4.0200 0.9930 -1.1670 0.0650 0.3430 0.1100 0.2100 0.3300 0.0800 -0.1100 0.0300 0.3000 """)