# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2012-2016 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.
"""
Module exports :class:`AtkinsonBoore2006`,
:class:`AtkinsonBoore2006MblgAB1987bar140NSHMP2008`,
:class:`AtkinsonBoore2006MblgJ1996bar140NSHMP2008`,
:class:`AtkinsonBoore2006Mwbar140NSHMP2008`,
:class:`AtkinsonBoore2006MblgAB1987bar200NSHMP2008`,
:class:`AtkinsonBoore2006MblgJ1996bar200NSHMP2008`,
:class:`AtkinsonBoore2006Mwbar200NSHMP2008`,
:class:`AtkinsonBoore2006Modified2011`.
"""
from __future__ import division
import numpy as np
# standard acceleration of gravity in m/s**2
from scipy.constants import g
from math import log10
from openquake.hazardlib.gsim.boore_atkinson_2008 import BooreAtkinson2008
from openquake.hazardlib.gsim.utils import (
mblg_to_mw_atkinson_boore_87,
mblg_to_mw_johnston_96,
clip_mean
)
from openquake.hazardlib.gsim.base import CoeffsTable
from openquake.hazardlib import const
from openquake.hazardlib.imt import PGA, PGV, SA
[docs]class AtkinsonBoore2006(BooreAtkinson2008):
"""
Implements GMPE developed by Gail M. Atkinson and David M. Boore and
published as "Earthquake Ground-Motion Prediction Equations for Eastern
North America" (2006, Bulletin of the Seismological Society of America,
Volume 96, No. 6, pages 2181-2205). This class implements only the
equations for stress parameter of 140 bars. The correction described in
'Adjustment of Equations to Consider Alternative Stress Parameters',
p. 2198, is not implemented.
This class extends the BooreAtkinson2008 because it uses the same soil
amplification function. Note that in the paper, the reported soil
amplification function is the one used in a preliminary version of the
Boore and Atkinson 2008 GMPE, while the one that should be used is the
one described in the final paper. See comment in:
http://www.daveboore.com/pubs_online/ab06_gmpes_programs_and_tables.pdf
"""
#: Supported tectonic region type is stable continental, given
#: that the equations have been derived for Eastern North America
DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.STABLE_CONTINENTAL
#: Supported intensity measure types are spectral acceleration,
#: peak ground velocity and peak ground acceleration, see paragraph
#: 'Methodology and Model Parameters', p. 2182
DEFINED_FOR_INTENSITY_MEASURE_TYPES = set([
PGA,
PGV,
SA
])
#: Supported intensity measure component is horizontal
#: :attr:`~openquake.hazardlib.const.IMC.HORIZONTAL`,
#: see paragraph 'Results', pag 2190, and caption to table 6, p. 2192
DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.HORIZONTAL
#: Supported standard deviation type is total, see table 6
#: and 9, p. 2192 and 2202, respectively.
DEFINED_FOR_STANDARD_DEVIATION_TYPES = set([
const.StdDev.TOTAL
])
#: Required site parameters is Vs30.
#: See paragraph 'Equations for soil sites', p. 2200
REQUIRES_SITES_PARAMETERS = set(('vs30', ))
#: Required rupture parameter is magnitude (see
#: paragraph 'Methodology and Model Parameters', p. 2182)
REQUIRES_RUPTURE_PARAMETERS = set(('mag', ))
#: Required distance measure is Rrup.
#: See paragraph 'Methodology and Model Parameters', p. 2182
REQUIRES_DISTANCES = set(('rrup', ))
[docs] def get_mean_and_stddevs(self, sites, rup, dists, imt, stddev_types):
"""
See :meth:`superclass method
<.base.GroundShakingIntensityModel.get_mean_and_stddevs>`
for spec of input and result values.
"""
mean = self._get_mean(sites.vs30, rup.mag, dists.rrup, imt, scale_fac=0)
stddevs = self._get_stddevs(stddev_types, num_sites=sites.vs30.size)
return mean, stddevs
def _get_mean(self, vs30, mag, rrup, imt, scale_fac):
"""
Compute and return mean
"""
C_HR, C_BC, C_SR, SC = self._extract_coeffs(imt)
rrup = self._clip_distances(rrup)
f0 = self._compute_f0_factor(rrup)
f1 = self._compute_f1_factor(rrup)
f2 = self._compute_f2_factor(rrup)
pga_bc = self._get_pga_bc(
f0, f1, f2, SC, mag, rrup, vs30, scale_fac
)
# compute mean values for hard-rock sites (vs30 >= 2000),
# and non-hard-rock sites (vs30 < 2000) and add soil amplification
# term
mean = np.zeros_like(vs30)
self._compute_mean(C_HR, f0, f1, f2, SC, mag, rrup,
vs30 >= 2000.0, mean, scale_fac)
self._compute_mean(C_BC, f0, f1, f2, SC, mag, rrup,
vs30 < 2000.0, mean, scale_fac)
self._compute_soil_amplification(C_SR, vs30, pga_bc, mean)
# convert from base 10 to base e
if imt == PGV():
mean = np.log(10 ** mean)
else:
# convert from cm/s**2 to g
mean = np.log((10 ** mean) * 1e-2 / g)
return mean
def _get_pga_bc(self, f0, f1, f2, SC, mag, rrup, vs30, scale_fac):
"""
Compute and return PGA on BC boundary
"""
pga_bc = np.zeros_like(vs30)
self._compute_mean(self.COEFFS_BC[PGA()], f0, f1, f2, SC, mag,
rrup, vs30 < 2000.0, pga_bc, scale_fac)
return (10 ** pga_bc) * 1e-2 / g
def _extract_coeffs(self, imt):
"""
Extract dictionaries of coefficients specific to required
intensity measure type.
"""
C_HR = self.COEFFS_HARD_ROCK[imt]
C_BC = self.COEFFS_BC[imt]
C_SR = self.COEFFS_SOIL_RESPONSE[imt]
SC = self.STRESS_COEFFS[imt]
return C_HR, C_BC, C_SR, SC
def _clip_distances(self, rrup):
"""
Return array of distances with values clipped to 1. See end of
paragraph 'Methodology and Model Parameters', p. 2182. The equations
have a singularity for distance = 0, so that's why distances are
clipped to 1.
"""
rrup = rrup.copy()
rrup[rrup < 1] = 1
return rrup
def _compute_f0_factor(self, rrup):
"""
Compute and return factor f0 - see equation (5), 6th term, p. 2191.
"""
# f0 = max(log10(R0/rrup),0)
f0 = np.log10(self.COEFFS_IMT_INDEPENDENT['R0'] / rrup)
f0[f0 < 0] = 0.0
return f0
def _compute_f1_factor(self, rrup):
"""
Compute and return factor f1 - see equation (5), 4th term, p. 2191
"""
# f1 = min(log10(rrup),log10(R1))
f1 = np.log10(rrup)
logR1 = np.log10(self.COEFFS_IMT_INDEPENDENT['R1'])
f1[f1 > logR1] = logR1
return f1
def _compute_f2_factor(self, rrup):
"""
Compute and return factor f2, see equation (5), 5th term, pag 2191
"""
# f2 = max(log10(rrup/R2),0)
f2 = np.log10(rrup / self.COEFFS_IMT_INDEPENDENT['R2'])
f2[f2 < 0] = 0.0
return f2
def _compute_stress_drop_adjustment(self, SC, mag, scale_fac):
"""
Compute equation (6) p. 2200
"""
return scale_fac * np.minimum(
SC['delta'] + 0.05,
0.05 + SC['delta'] * (
np.maximum(mag - SC['M1'], 0) / (SC['Mh'] - SC['M1'])
)
)
def _compute_mean(self, C, f0, f1, f2, SC, mag, rrup, idxs, mean,
scale_fac):
"""
Compute mean value (for a set of indexes) without site amplification
terms. This is equation (5), p. 2191, without S term.
"""
mean[idxs] = (C['c1'] +
C['c2'] * mag +
C['c3'] * (mag ** 2) +
(C['c4'] + C['c5'] * mag) * f1[idxs] +
(C['c6'] + C['c7'] * mag) * f2[idxs] +
(C['c8'] + C['c9'] * mag) * f0[idxs] +
C['c10'] * rrup[idxs] +
self._compute_stress_drop_adjustment(SC, mag, scale_fac))
def _compute_soil_amplification(self, C, vs30, pga_bc, mean):
"""
Compute soil amplification, that is S term in equation (5), p. 2191,
and add to mean values for non hard rock sites.
"""
# convert from base e (as defined in BA2008) to base 10 (as used in
# AB2006)
sal = np.log10(np.exp(self._get_site_amplification_linear(vs30, C)))
sanl = np.log10(np.exp(
self._get_site_amplification_non_linear(vs30, pga_bc, C)))
idxs = vs30 < 2000.0
mean[idxs] = mean[idxs] + sal[idxs] + sanl[idxs]
def _get_stddevs(self, stddev_types, num_sites):
"""
Return total standard deviation (see table 6, p. 2192).
"""
assert all(stddev_type in self.DEFINED_FOR_STANDARD_DEVIATION_TYPES
for stddev_type in stddev_types)
stddevs = [np.zeros(num_sites) +
self.COEFFS_IMT_INDEPENDENT['std_total']
for _ in stddev_types]
return stddevs
#: Hard rock coefficents, table 6, pag 2192,
#: coefficient values taken from Fortran implementation of Dave Boore
#: (higher precision than in the paper)
COEFFS_HARD_ROCK = CoeffsTable(sa_damping=5, table="""\
IMT c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
5.000 -5.408E+00 1.714E+00 -9.012E-02 -2.537E+00 2.267E-01 -1.268E+00 1.162E-01 9.792E-01 -1.767E-01 -1.757E-04
4.000 -5.791E+00 1.916E+00 -1.071E-01 -2.441E+00 2.113E-01 -1.162E+00 1.018E-01 1.012E+00 -1.824E-01 -2.010E-04
3.125 -6.038E+00 2.080E+00 -1.221E-01 -2.367E+00 2.002E-01 -1.073E+00 8.950E-02 1.002E+00 -1.803E-01 -2.306E-04
2.500 -6.169E+00 2.211E+00 -1.348E-01 -2.299E+00 1.898E-01 -9.860E-01 7.860E-02 9.683E-01 -1.765E-01 -2.823E-04
2.000 -6.183E+00 2.302E+00 -1.442E-01 -2.223E+00 1.770E-01 -9.370E-01 7.067E-02 9.518E-01 -1.768E-01 -3.220E-04
1.587 -6.043E+00 2.342E+00 -1.496E-01 -2.157E+00 1.662E-01 -8.704E-01 6.047E-02 9.207E-01 -1.734E-01 -3.748E-04
1.250 -5.724E+00 2.324E+00 -1.505E-01 -2.104E+00 1.565E-01 -8.202E-01 5.186E-02 8.563E-01 -1.661E-01 -4.329E-04
1.000 -5.272E+00 2.264E+00 -1.483E-01 -2.069E+00 1.497E-01 -8.132E-01 4.666E-02 8.262E-01 -1.622E-01 -4.862E-04
0.794 -4.604E+00 2.132E+00 -1.406E-01 -2.062E+00 1.468E-01 -7.974E-01 4.345E-02 7.748E-01 -1.558E-01 -5.790E-04
0.629 -3.917E+00 1.987E+00 -1.314E-01 -2.045E+00 1.419E-01 -7.818E-01 4.297E-02 7.878E-01 -1.590E-01 -6.948E-04
0.500 -3.216E+00 1.826E+00 -1.201E-01 -2.018E+00 1.344E-01 -8.134E-01 4.437E-02 8.839E-01 -1.751E-01 -7.704E-04
0.397 -2.437E+00 1.649E+00 -1.084E-01 -2.051E+00 1.363E-01 -8.426E-01 4.483E-02 7.386E-01 -1.557E-01 -8.509E-04
0.315 -1.721E+00 1.483E+00 -9.739E-02 -2.080E+00 1.382E-01 -8.893E-01 4.869E-02 6.101E-01 -1.389E-01 -9.538E-04
0.251 -1.121E+00 1.342E+00 -8.722E-02 -2.082E+00 1.349E-01 -9.714E-01 5.628E-02 6.140E-01 -1.432E-01 -1.055E-03
0.199 -6.153E-01 1.227E+00 -7.886E-02 -2.087E+00 1.312E-01 -1.120E+00 6.788E-02 6.055E-01 -1.459E-01 -1.125E-03
0.158 -1.455E-01 1.123E+00 -7.143E-02 -2.116E+00 1.302E-01 -1.303E+00 8.311E-02 5.617E-01 -1.438E-01 -1.182E-03
0.125 2.144E-01 1.054E+00 -6.664E-02 -2.154E+00 1.295E-01 -1.608E+00 1.046E-01 4.273E-01 -1.303E-01 -1.153E-03
0.100 4.797E-01 1.017E+00 -6.404E-02 -2.201E+00 1.270E-01 -2.007E+00 1.326E-01 3.371E-01 -1.266E-01 -1.047E-03
0.079 6.906E-01 9.974E-01 -6.276E-02 -2.262E+00 1.246E-01 -2.487E+00 1.636E-01 2.139E-01 -1.207E-01 -8.469E-04
0.063 9.109E-01 9.802E-01 -6.208E-02 -2.360E+00 1.263E-01 -2.972E+00 1.910E-01 1.069E-01 -1.173E-01 -5.786E-04
0.050 1.105E+00 9.719E-01 -6.197E-02 -2.466E+00 1.276E-01 -3.390E+00 2.144E-01 -1.391E-01 -9.839E-02 -3.167E-04
0.040 1.264E+00 9.680E-01 -6.232E-02 -2.581E+00 1.317E-01 -3.644E+00 2.276E-01 -3.506E-01 -8.126E-02 -1.225E-04
0.031 1.436E+00 9.592E-01 -6.276E-02 -2.714E+00 1.400E-01 -3.728E+00 2.343E-01 -5.430E-01 -6.448E-02 -3.230E-05
0.025 1.522E+00 9.597E-01 -6.351E-02 -2.813E+00 1.458E-01 -3.654E+00 2.362E-01 -6.544E-01 -5.500E-02 -4.848E-05
pga 9.069E-01 9.830E-01 -6.595E-02 -2.698E+00 1.594E-01 -2.795E+00 2.120E-01 -3.011E-01 -6.532E-02 -4.484E-04
pgv -1.442E+00 9.909E-01 -5.848E-02 -2.701E+00 2.155E-01 -2.436E+00 2.659E-01 8.479E-02 -6.927E-02 -3.734E-04
""")
#: Coefficients for NEHRP BC boundary (Vs30 = 760 m/s), table 9, pag 2202
#: coefficient values taken from Fortran implementation of Dave Boore
#: (higher precision than in the paper)
COEFFS_BC = CoeffsTable(sa_damping=5, table="""\
IMT c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
5.000 -4.852E+00 1.580E+00 -8.066E-02 -2.530E+00 2.216E-01 -1.426E+00 1.361E-01 6.340E-01 -1.413E-01 -1.608E-04
4.000 -5.256E+00 1.787E+00 -9.785E-02 -2.435E+00 2.068E-01 -1.307E+00 1.210E-01 7.340E-01 -1.560E-01 -1.959E-04
3.125 -5.590E+00 1.972E+00 -1.136E-01 -2.331E+00 1.908E-01 -1.204E+00 1.099E-01 8.449E-01 -1.723E-01 -2.452E-04
2.500 -5.800E+00 2.126E+00 -1.278E-01 -2.257E+00 1.790E-01 -1.123E+00 9.539E-02 8.911E-01 -1.797E-01 -2.601E-04
2.000 -5.853E+00 2.233E+00 -1.385E-01 -2.195E+00 1.688E-01 -1.037E+00 8.002E-02 8.666E-01 -1.790E-01 -2.860E-04
1.587 -5.754E+00 2.287E+00 -1.450E-01 -2.131E+00 1.582E-01 -9.568E-01 6.762E-02 8.670E-01 -1.789E-01 -3.429E-04
1.250 -5.489E+00 2.289E+00 -1.476E-01 -2.081E+00 1.501E-01 -9.000E-01 5.794E-02 8.208E-01 -1.719E-01 -4.070E-04
1.000 -5.058E+00 2.233E+00 -1.454E-01 -2.030E+00 1.408E-01 -8.744E-01 5.412E-02 7.922E-01 -1.697E-01 -4.886E-04
0.794 -4.446E+00 2.119E+00 -1.387E-01 -2.009E+00 1.356E-01 -8.576E-01 4.976E-02 7.084E-01 -1.589E-01 -5.751E-04
0.629 -3.748E+00 1.973E+00 -1.294E-01 -1.997E+00 1.313E-01 -8.417E-01 4.820E-02 6.772E-01 -1.557E-01 -6.763E-04
0.500 -3.007E+00 1.803E+00 -1.178E-01 -1.982E+00 1.274E-01 -8.466E-01 4.698E-02 6.670E-01 -1.546E-01 -7.676E-04
0.397 -2.281E+00 1.629E+00 -1.054E-01 -1.967E+00 1.227E-01 -8.880E-01 5.033E-02 6.839E-01 -1.582E-01 -8.587E-04
0.315 -1.560E+00 1.455E+00 -9.312E-02 -1.977E+00 1.209E-01 -9.466E-01 5.576E-02 6.499E-01 -1.558E-01 -9.552E-04
0.251 -8.756E-01 1.293E+00 -8.193E-02 -2.014E+00 1.226E-01 -1.027E+00 6.341E-02 5.808E-01 -1.491E-01 -1.053E-03
0.199 -3.056E-01 1.156E+00 -7.211E-02 -2.038E+00 1.220E-01 -1.147E+00 7.375E-02 5.082E-01 -1.430E-01 -1.140E-03
0.158 1.194E-01 1.057E+00 -6.473E-02 -2.054E+00 1.190E-01 -1.355E+00 9.160E-02 5.164E-01 -1.503E-01 -1.178E-03
0.125 5.356E-01 9.647E-01 -5.835E-02 -2.110E+00 1.205E-01 -1.672E+00 1.156E-01 3.433E-01 -1.322E-01 -1.130E-03
0.100 7.818E-01 9.235E-01 -5.555E-02 -2.165E+00 1.191E-01 -2.097E+00 1.483E-01 2.847E-01 -1.319E-01 -9.897E-04
0.079 9.667E-01 9.033E-01 -5.476E-02 -2.249E+00 1.215E-01 -2.530E+00 1.775E-01 1.001E-01 -1.147E-01 -7.724E-04
0.063 1.109E+00 8.875E-01 -5.386E-02 -2.334E+00 1.229E-01 -2.881E+00 2.007E-01 -3.189E-02 -1.069E-01 -5.483E-04
0.050 1.209E+00 8.830E-01 -5.441E-02 -2.440E+00 1.295E-01 -3.035E+00 2.133E-01 -2.098E-01 -8.997E-02 -4.145E-04
0.040 1.261E+00 8.789E-01 -5.515E-02 -2.536E+00 1.388E-01 -2.994E+00 2.158E-01 -3.908E-01 -6.746E-02 -3.881E-04
0.031 1.191E+00 8.884E-01 -5.642E-02 -2.577E+00 1.451E-01 -2.840E+00 2.121E-01 -4.370E-01 -5.866E-02 -4.329E-04
0.025 1.052E+00 9.030E-01 -5.768E-02 -2.571E+00 1.483E-01 -2.652E+00 2.065E-01 -4.084E-01 -5.769E-02 -5.122E-04
pga 5.233E-01 9.686E-01 -6.196E-02 -2.439E+00 1.465E-01 -2.335E+00 1.912E-01 -8.695E-02 -8.285E-02 -6.304E-04
pgv -1.662E+00 1.050E+00 -6.035E-02 -2.496E+00 1.840E-01 -2.301E+00 2.500E-01 1.268E-01 -8.704E-02 -4.266E-04
""")
#: IMT-independent coefficients. std_total is the total standard deviation,
#: see Table 6, pag 2192 and Table 9, pag 2202. R0, R1, R2 are coefficients
#: required for mean calculation - see equation (5) pag 2191. v1, v2, Vref
#: are coefficients required for soil response calculation, see table 8,
#: p. 2201
COEFFS_IMT_INDEPENDENT = {
# the std is converted from base 10 to base e
'std_total': np.log(10 ** 0.30),
'R0': 10.0,
'R1': 70.0,
'R2': 140.0,
'v1': 180.0,
'v2': 300.0,
'Vref': 760.0
}
STRESS_COEFFS = CoeffsTable(sa_damping=5, table="""\
IMT delta M1 Mh
pga 0.15 0.50 5.50
0.025 0.15 0.00 5.00
0.031 0.15 0.00 5.00
0.04 0.15 0.00 5.00
0.05 0.15 0.00 5.00
0.063 0.15 0.17 5.17
0.079 0.15 0.34 5.34
0.1 0.15 0.50 5.50
0.126 0.15 1.15 5.67
0.158 0.15 1.85 5.84
0.199 0.15 2.50 6.00
0.251 0.15 2.90 6.12
0.315 0.15 3.30 6.25
0.397 0.15 3.65 6.37
0.5 0.15 4.00 6.50
0.629 0.15 4.17 6.70
0.794 0.15 4.34 6.95
1.00 0.15 4.50 7.20
1.25 0.15 4.67 7.45
1.587 0.15 4.84 7.70
2.0 0.15 5.00 8.00
2.5 0.15 5.25 8.12
3.125 0.15 5.50 8.25
4.0 0.15 5.75 8.37
5.0 0.15 6.00 8.50
pgv 0.11 2.00 5.50
""")
[docs]class AtkinsonBoore2006MblgAB1987bar140NSHMP2008(AtkinsonBoore2006):
"""
Implements GMPE developed by Gail M. Atkinson and David M. Boore and
published as "Earthquake Ground-Motion Prediction Equations for Eastern
North America" (2006, Bulletin of the Seismological Society of America,
Volume 96, No. 6, pages 2181-2205) as utilized by the National Seismic
Hazard Mapping Project (NSHMP) for the 2008 central and eastern US model.
The class replicates the algorithm as coded in ``subroutine getAB06``
in ``hazgridXnga2.f`` Fortran code available at:
http://earthquake.usgs.gov/hazards/products/conterminous/2008/software/
The class implement the equation for static stress drop equal to 140 bar.
The class assumes rupture magnitude to be in Mblg scale (given that
MFDs for central and eastern US are given in this scale). Therefore Mblg
is converted to Mw by using Atkinson and Boore 1987 conversion equation.
Mean value is clipped at 1.5 g for PGA and 3.0 g for SA with periods in
range (0.02, 0.55) s.
"""
[docs] def get_mean_and_stddevs(self, sites, rup, dists, imt, stddev_types):
"""
See :meth:`superclass method
<.base.GroundShakingIntensityModel.get_mean_and_stddevs>`
for spec of input and result values.
"""
mag = self._convert_magnitude(rup.mag)
mean = self._get_mean(sites.vs30, mag, dists.rrup, imt, scale_fac=0)
stddevs = self._get_stddevs(stddev_types, num_sites=sites.vs30.size)
mean = clip_mean(imt, mean)
return mean, stddevs
def _convert_magnitude(self, mag):
"""
Convert magnitude from Mblg to Mw using Atkinson and Boore 1987
equation
"""
return mblg_to_mw_atkinson_boore_87(mag)
[docs]class AtkinsonBoore2006MblgJ1996bar140NSHMP2008(
AtkinsonBoore2006MblgAB1987bar140NSHMP2008):
"""
Extend :class:`AtkinsonBoore2006MblgAB1987bar140NSHMP2008` but uses
Johnston 1996 equation to convert from Mblg to Mw
"""
def _convert_magnitude(self, mag):
"""
Convert magnitude from Mblg to Mw using Johnston 1996 equation
"""
return mblg_to_mw_johnston_96(mag)
[docs]class AtkinsonBoore2006Mwbar140NSHMP2008(
AtkinsonBoore2006MblgAB1987bar140NSHMP2008):
"""
Extend :class:`AtkinsonBoore2006MblgAB1987bar140NSHMP2008` but assumes
magnitude to be in Mw scale and thefore no conversion is applied
"""
def _convert_magnitude(self, mag):
"""
Return magnitude value unchanged
"""
return mag
[docs]class AtkinsonBoore2006MblgAB1987bar200NSHMP2008(AtkinsonBoore2006):
"""
Same as :class:`AtkinsonBoore2006MblgAB1987bar140NSHMP2008` but with
adjustment for 200 bar stress drop
"""
[docs] def get_mean_and_stddevs(self, sites, rup, dists, imt, stddev_types):
"""
See :meth:`superclass method
<.base.GroundShakingIntensityModel.get_mean_and_stddevs>`
for spec of input and result values.
"""
mag = self._convert_magnitude(rup.mag)
# stress drop scaling factor defined in subroutine getAB06
mean = self._get_mean(
sites.vs30, mag, dists.rrup, imt, scale_fac=0.5146
)
stddevs = self._get_stddevs(stddev_types, num_sites=sites.vs30.size)
mean = clip_mean(imt, mean)
return mean, stddevs
def _convert_magnitude(self, mag):
"""
Convert magnitude from Mblg to Mw using Atkinson and Boore 1987
equation
"""
return mblg_to_mw_atkinson_boore_87(mag)
[docs]class AtkinsonBoore2006MblgJ1996bar200NSHMP2008(
AtkinsonBoore2006MblgAB1987bar200NSHMP2008):
"""
Extend :class:`AtkinsonBoore2006MblgAB1987bar200NSHMP2008` but uses
Johnston 1996 equation to convert from Mblg to Mw
"""
def _convert_magnitude(self, mag):
"""
Convert magnitude from Mblg to Mw using Johnston 1996 equation
"""
return mblg_to_mw_johnston_96(mag)
[docs]class AtkinsonBoore2006Mwbar200NSHMP2008(
AtkinsonBoore2006MblgAB1987bar200NSHMP2008):
"""
Extend :class:`AtkinsonBoore2006MblgAB1987bar200NSHMP2008` but assumes
magnitude to be in Mw scale therefore no conversion is applied
"""
def _convert_magnitude(self, mag):
"""
Return magnitude value unchanged
"""
return mag
[docs]class AtkinsonBoore2006Modified2011(AtkinsonBoore2006):
"""
This GMPE modifies the original implementation of :class:
`AtkinsonBoore2006` with the magnitude dependent stress-drop scaling
factor proposed in Atkinson & Boore (2011)
Atkinson, G. A. and Boore D. M. (2011) Modifications to Existing
Ground-Motion Prediciton Equations in Light of New Data. Bulletin of the
Seismological Society of America, 101(3), 1121 - 1135
"""
[docs] def get_mean_and_stddevs(self, sites, rup, dists, imt, stddev_types):
"""
See :meth:`superclass method
<.base.GroundShakingIntensityModel.get_mean_and_stddevs>`
for spec of input and result values.
"""
# Stress drop scaling factor is now a property of magnitude
scale_fac = self._get_stress_drop_scaling_factor(rup.mag)
mean = self._get_mean(sites.vs30, rup.mag, dists.rrup, imt, scale_fac)
stddevs = self._get_stddevs(stddev_types, num_sites=sites.vs30.size)
return mean, stddevs
def _get_stress_drop_scaling_factor(self, magnitude):
"""
Returns the magnitude dependent stress drop scaling factor defined in
equation 6 (page 1128) of Atkinson & Boore (2011)
"""
stress_drop = 10.0 ** (3.45 - 0.2 * magnitude)
cap = 10.0 ** (3.45 - 0.2 * 5.0)
if stress_drop > cap:
stress_drop = cap
return log10(stress_drop / 140.0) / log10(2.0)