Source code for openquake.hazardlib.calc.gmf

# -*- coding: utf-8 -*-
# vim: tabstop=4 shiftwidth=4 softtabstop=4
#
# Copyright (C) 2012-2016 GEM Foundation
#
# OpenQuake is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# OpenQuake is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with OpenQuake. If not, see <http://www.gnu.org/licenses/>.

"""
Module :mod:`~openquake.hazardlib.calc.gmf` exports
:func:`ground_motion_fields`.
"""

import numpy
import scipy.stats

from openquake.baselib.python3compat import zip
from openquake.baselib.general import get_array
from openquake.hazardlib.const import StdDev
from openquake.hazardlib.calc import filters
from openquake.hazardlib.gsim.base import ContextMaker
from openquake.hazardlib.imt import from_string


class CorrelationButNoInterIntraStdDevs(Exception):
    def __init__(self, corr, gsim):
        self.corr = corr
        self.gsim = gsim

    def __str__(self):
        return '''\
You cannot use the correlation model %s with the GSIM %s, \
that defines only the total standard deviation. If you want to use a \
correlation model you have to select a GMPE that provides the inter and \
intra event standard deviations.''' % (
            self.corr.__class__.__name__, self.gsim.__class__.__name__)


[docs]class GmfComputer(object): """ Given an earthquake rupture, the ground motion field computer computes ground shaking over a set of sites, by randomly sampling a ground shaking intensity model. :param :class:`openquake.hazardlib.source.rupture.Rupture` rupture: Rupture to calculate ground motion fields radiated from. :param :class:`openquake.hazardlib.site.SiteCollection` sites: Sites of interest to calculate GMFs. :param imts: a sorted list of Intensity Measure Type strings :param truncation_level: Float, number of standard deviations for truncation of the intensity distribution, or ``None``. :param correlation_model: Instance of correlation model object. See :mod:`openquake.hazardlib.correlation`. Can be ``None``, in which case non-correlated ground motion fields are calculated. Correlation model is not used if ``truncation_level`` is zero. """ def __init__(self, rupture, sites, imts, gsims, truncation_level=None, correlation_model=None, samples=0): assert sites, sites self.rupture = rupture self.sites = sites self.imts = [from_string(imt) for imt in imts] self.gsims = gsims self.truncation_level = truncation_level self.correlation_model = correlation_model self.samples = samples self.ctx = ContextMaker(gsims).make_contexts(sites, rupture) # used by the scenario calculators
[docs] def compute(self, seed, gsim, num_events): """ :param seed: a random seed :param gsim: a GSIM instance :param num_events: the number of seismic events :returns: a 32 bit array of shape (num_imts, num_sites, num_events) """ if seed is not None: numpy.random.seed(seed) result = numpy.zeros( (len(self.imts), len(self.sites), num_events), numpy.float32) sctx, rctx, dctx = self.ctx if self.truncation_level == 0: assert self.correlation_model is None for imti, imt in enumerate(self.imts): mean, _stddevs = gsim.get_mean_and_stddevs( sctx, rctx, dctx, imt, stddev_types=[]) mean = gsim.to_imt_unit_values(mean) mean.shape += (1, ) mean = mean.repeat(num_events, axis=1) result[imti] = mean return result elif self.truncation_level is None: distribution = scipy.stats.norm() else: assert self.truncation_level > 0 distribution = scipy.stats.truncnorm( - self.truncation_level, self.truncation_level) for imti, imt in enumerate(self.imts): if gsim.DEFINED_FOR_STANDARD_DEVIATION_TYPES == \ set([StdDev.TOTAL]): # If the GSIM provides only total standard deviation, we need # to compute mean and total standard deviation at the sites # of interest. # In this case, we also assume no correlation model is used. if self.correlation_model: raise CorrelationButNoInterIntraStdDevs( self.correlation_model, gsim) mean, [stddev_total] = gsim.get_mean_and_stddevs( sctx, rctx, dctx, imt, [StdDev.TOTAL]) stddev_total = stddev_total.reshape(stddev_total.shape + (1, )) mean = mean.reshape(mean.shape + (1, )) total_residual = stddev_total * distribution.rvs( size=(len(self.sites), num_events)) gmf = gsim.to_imt_unit_values(mean + total_residual) else: mean, [stddev_inter, stddev_intra] = gsim.get_mean_and_stddevs( sctx, rctx, dctx, imt, [StdDev.INTER_EVENT, StdDev.INTRA_EVENT]) stddev_intra = stddev_intra.reshape(stddev_intra.shape + (1, )) stddev_inter = stddev_inter.reshape(stddev_inter.shape + (1, )) mean = mean.reshape(mean.shape + (1, )) intra_residual = stddev_intra * distribution.rvs( size=(len(self.sites), num_events)) if self.correlation_model is not None: ir = self.correlation_model.apply_correlation( self.sites, imt, intra_residual) # this fixes a mysterious bug: ir[row] is actually # a matrix of shape (E, 1) and not a vector of size E intra_residual = numpy.zeros(ir.shape) for i, val in numpy.ndenumerate(ir): intra_residual[i] = val inter_residual = stddev_inter * distribution.rvs( size=num_events) gmf = gsim.to_imt_unit_values( mean + intra_residual + inter_residual) result[imti] = gmf return result
# used by the event_based calculators
[docs] def calcgmfs(self, seed, events, rlzs_by_gsim, min_iml=None): """ Yield the ground motion field for each seismic event. :param seed: seed for the numpy random number generator :param events: composite array of seismic events (eid, ses, occ, samples) :param rlzs_by_gsim: a dictionary {gsim instance: realizations} :yields: tuples (eid, imti, rlz, gmf_sids) """ sids = self.sites.sids imt_range = range(len(self.imts)) for i, gsim in enumerate(self.gsims): for j, rlz in enumerate(rlzs_by_gsim[gsim]): if self.samples > 1: eids = get_array(events, sample=rlz.sampleid)['eid'] else: eids = events['eid'] arr = self.compute(seed + j, gsim, len(eids)).transpose( 0, 2, 1) # array of shape (I, E, S) for imti in imt_range: for eid, gmf in zip(eids, arr[imti]): if min_iml is not None: # is an array ok = gmf >= min_iml[imti] gmf_sids = (gmf[ok], sids[ok]) else: gmf_sids = (gmf, sids) if len(gmf): yield eid, imti, rlz, gmf_sids
# this is not used in the engine; it is still useful for usage in IPython # when demonstrating hazardlib capabilities
[docs]def ground_motion_fields(rupture, sites, imts, gsim, truncation_level, realizations, correlation_model=None, rupture_site_filter=filters.rupture_site_noop_filter, seed=None): """ Given an earthquake rupture, the ground motion field calculator computes ground shaking over a set of sites, by randomly sampling a ground shaking intensity model. A ground motion field represents a possible 'realization' of the ground shaking due to an earthquake rupture. If a non-trivial filtering function is passed, the final result is expanded and filled with zeros in the places corresponding to the filtered out sites. .. note:: This calculator is using random numbers. In order to reproduce the same results numpy random numbers generator needs to be seeded, see http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.seed.html :param openquake.hazardlib.source.rupture.Rupture rupture: Rupture to calculate ground motion fields radiated from. :param openquake.hazardlib.site.SiteCollection sites: Sites of interest to calculate GMFs. :param imts: List of intensity measure type objects (see :mod:`openquake.hazardlib.imt`). :param gsim: Ground-shaking intensity model, instance of subclass of either :class:`~openquake.hazardlib.gsim.base.GMPE` or :class:`~openquake.hazardlib.gsim.base.IPE`. :param truncation_level: Float, number of standard deviations for truncation of the intensity distribution, or ``None``. :param realizations: Integer number of GMF realizations to compute. :param correlation_model: Instance of correlation model object. See :mod:`openquake.hazardlib.correlation`. Can be ``None``, in which case non-correlated ground motion fields are calculated. Correlation model is not used if ``truncation_level`` is zero. :param rupture_site_filter: Optional rupture-site filter function. See :mod:`openquake.hazardlib.calc.filters`. :param int seed: The seed used in the numpy random number generator :returns: Dictionary mapping intensity measure type objects (same as in parameter ``imts``) to 2d numpy arrays of floats, representing different realizations of ground shaking intensity for all sites in the collection. First dimension represents sites and second one is for realizations. """ ruptures_sites = list(rupture_site_filter([(rupture, sites)])) if not ruptures_sites: return dict((imt, numpy.zeros((len(sites), realizations))) for imt in imts) [(rupture, sites)] = ruptures_sites gc = GmfComputer(rupture, sites, [str(imt) for imt in imts], [gsim], truncation_level, correlation_model) res = gc.compute(seed, gsim, realizations) result = {} for imti, imt in enumerate(gc.imts): # makes sure the lenght of the arrays in output is the same as sites if rupture_site_filter is not filters.rupture_site_noop_filter: result[imt] = sites.expand(res[imti], placeholder=0) else: result[imt] = res[imti] return result