Source code for openquake.hazardlib.geo.surface.simple_fault

# The Hazard Library
# Copyright (C) 2012-2014, GEM Foundation
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""
Module :mod:`openquake.hazardlib.geo.surface.simple_fault` defines
:class:`SimpleFaultSurface`.
"""
import math

import numpy

from openquake.hazardlib.geo.surface.base import BaseQuadrilateralSurface
from openquake.hazardlib.geo.mesh import Mesh, RectangularMesh
from openquake.hazardlib.geo import utils as geo_utils
from openquake.hazardlib.geo.point import Point
from openquake.hazardlib.near_fault import get_plane_equation


[docs]class SimpleFaultSurface(BaseQuadrilateralSurface): """ Represent a fault surface as regular (uniformly spaced) 3D mesh of points. :param mesh: Instance of :class:`~openquake.hazardlib.geo.mesh.RectangularMesh` representing surface geometry. Another way to construct the surface object is to call :meth:`from_fault_data`. """ def __init__(self, mesh): super(SimpleFaultSurface, self).__init__() self.mesh = mesh assert not 1 in self.mesh.shape, ( "Mesh must have at least 2 nodes along both length and width." ) self.strike = self.dip = None
[docs] def _create_mesh(self): """ Return a mesh provided to object's constructor. """ return self.mesh
[docs] def get_dip(self): """ Return the fault dip as the average dip over the fault surface mesh. The average dip is defined as the weighted mean inclination of top row of mesh cells. See :meth:`openquake.hazardlib.geo.mesh.RectangularMesh.get_mean_inclination_and_azimuth` :returns: The average dip, in decimal degrees. """ if self.dip is None: # calculate weighted average dip and strike of only the top row # of cells since those values are uniform along dip for simple # faults top_row = self.get_mesh()[0:2] self.dip, self.strike = top_row.get_mean_inclination_and_azimuth() return self.dip
[docs] def get_strike(self): """ Return the fault strike as the average strike along the fault trace. The average strike is defined as the weighted mean azimuth of top row of mesh cells. See :meth:`openquake.hazardlib.geo.mesh.RectangularMesh.get_mean_inclination_and_azimuth` :returns: The average strike, in decimal degrees. """ if self.strike is None: self.get_dip() # this should cache strike value return self.strike
@classmethod
[docs] def check_fault_data(cls, fault_trace, upper_seismogenic_depth, lower_seismogenic_depth, dip, mesh_spacing): """ Verify the fault data and raise ``ValueError`` if anything is wrong. This method doesn't have to be called by hands before creating the surface object, because it is called from :meth:`from_fault_data`. """ if not len(fault_trace) >= 2: raise ValueError("the fault trace must have at least two points") if not fault_trace.on_surface(): raise ValueError("the fault trace must be defined on the surface") tlats = [point.latitude for point in fault_trace.points] tlons = [point.longitude for point in fault_trace.points] if geo_utils.line_intersects_itself(tlons, tlats): raise ValueError("fault trace intersects itself") if not 0.0 < dip <= 90.0: raise ValueError("dip must be between 0.0 and 90.0") if not lower_seismogenic_depth > upper_seismogenic_depth: raise ValueError("lower seismogenic depth must be greater than " "upper seismogenic depth") if not upper_seismogenic_depth >= 0.0: raise ValueError("upper seismo depth must be non-negative") if not mesh_spacing > 0.0: raise ValueError("mesh spacing must be positive")
@classmethod
[docs] def from_fault_data(cls, fault_trace, upper_seismogenic_depth, lower_seismogenic_depth, dip, mesh_spacing): """ Create and return a fault surface using fault source data. :param openquake.hazardlib.geo.line.Line fault_trace: Geographical line representing the intersection between the fault surface and the earth surface. :param upper_seismo_depth: Minimum depth ruptures can reach, in km (i.e. depth to fault's top edge). :param lower_seismo_depth: Maximum depth ruptures can reach, in km (i.e. depth to fault's bottom edge). :param dip: Dip angle (i.e. angle between fault surface and earth surface), in degrees. :param mesh_spacing: Distance between two subsequent points in a mesh, in km. :returns: An instance of :class:`SimpleFaultSurface` created using that data. Uses :meth:`check_fault_data` for checking parameters. """ cls.check_fault_data(fault_trace, upper_seismogenic_depth, lower_seismogenic_depth, dip, mesh_spacing) # Loops over points in the top edge, for each point # on the top edge compute corresponding point on the bottom edge, then # computes equally spaced points between top and bottom points. vdist_top = upper_seismogenic_depth vdist_bottom = lower_seismogenic_depth hdist_top = vdist_top / math.tan(math.radians(dip)) hdist_bottom = vdist_bottom / math.tan(math.radians(dip)) strike = fault_trace[0].azimuth(fault_trace[-1]) azimuth = (strike + 90.0) % 360 mesh = [] for point in fault_trace.resample(mesh_spacing): top = point.point_at(hdist_top, vdist_top, azimuth) bottom = point.point_at(hdist_bottom, vdist_bottom, azimuth) mesh.append(top.equally_spaced_points(bottom, mesh_spacing)) # number of rows corresponds to number of points along dip # number of columns corresponds to number of points along strike surface_points = numpy.array(mesh).transpose().tolist() mesh = RectangularMesh.from_points_list(surface_points) assert 1 not in mesh.shape, ( "Mesh must have at least 2 nodes along both length and width." " Possible cause: Mesh spacing could be too large with respect to" " the fault length and width." ) return cls(mesh)
@classmethod
[docs] def get_fault_patch_vertices(cls, rupture_top_edge, upper_seismogenic_depth, lower_seismogenic_depth, dip, index_patch=1): """ Get surface main vertices. Parameters are the same as for :meth:`from_fault_data`, excluding fault_trace, and mesh spacing. :param rupture_top_edge: A instances of :class:`openquake.hazardlib.geo.line.Line` representing the rupture surface's top edge. :param index_patch: Indicate the patch of the fault in order to output the vertices. The fault patch numbering follows the same logic of the right-hand rule i.e. patch with index 1 is the first patch along the trace. :returns: Four :class:~openquake.hazardlib.geo.point.Point objects representing the four vertices of the target patch. """ # Similar to :meth:`from_fault_data`, we just don't resample edges dip_tan = math.tan(math.radians(dip)) hdist_bottom = ( lower_seismogenic_depth - upper_seismogenic_depth) / dip_tan strike = rupture_top_edge[0].azimuth(rupture_top_edge[-1]) azimuth = (strike + 90.0) % 360 # Collect coordinates of vertices on the top and bottom edge lons = [] lats = [] deps = [] t_lon = [] t_lat = [] t_dep = [] for point in rupture_top_edge.points: top_edge_point = point bottom_edge_point = point.point_at(hdist_bottom, 0, azimuth) lons.append(top_edge_point.longitude) lats.append(top_edge_point.latitude) deps.append(upper_seismogenic_depth) t_lon.append(bottom_edge_point.longitude) t_lat.append(bottom_edge_point.latitude) t_dep.append(lower_seismogenic_depth) all_lons = numpy.array(lons + list(reversed(t_lon)), float) all_lats = numpy.array(lats + list(reversed(t_lat)), float) all_deps = numpy.array(deps + list(reversed(t_dep)), float) index1 = int(index_patch - 1) index2 = int(index_patch) index3 = int(2 * len(rupture_top_edge) - (index_patch + 1)) index4 = int(2 * len(rupture_top_edge) - index_patch) p0 = Point(all_lons[index1], all_lats[index1], all_deps[index1]) p1 = Point(all_lons[index2], all_lats[index2], all_deps[index2]) p2 = Point(all_lons[index3], all_lats[index3], all_deps[index3]) p3 = Point(all_lons[index4], all_lats[index4], all_deps[index4]) return p0, p1, p2, p3
@classmethod
[docs] def hypocentre_patch_index(cls, hypocentre, rupture_top_edge, upper_seismogenic_depth, lower_seismogenic_depth, dip): """ This methods finds the index of the fault patch including the hypocentre. :param hypocentre: :class:`~openquake.hazardlib.geo.point.Point` object representing the location of hypocentre. :param rupture_top_edge: A instances of :class:`openquake.hazardlib.geo.line.Line` representing the rupture surface's top edge. :param upper_seismo_depth: Minimum depth ruptures can reach, in km (i.e. depth to fault's top edge). :param lower_seismo_depth: Maximum depth ruptures can reach, in km (i.e. depth to fault's bottom edge). :param dip: Dip angle (i.e. angle between fault surface and earth surface), in degrees. :return: An integer corresponding to the index of the fault patch which contains the hypocentre. """ totaln_patch = len(rupture_top_edge) for index in range(1, totaln_patch): p0, p1, p2, p3 = cls.get_fault_patch_vertices( rupture_top_edge, upper_seismogenic_depth, lower_seismogenic_depth, dip, index_patch=index) [normal, dist_to_plane] = get_plane_equation(p0, p1, p2, hypocentre) if (numpy.allclose(dist_to_plane, 0., atol=25., rtol=0.)): return index
@classmethod
[docs] def get_surface_vertexes(cls, fault_trace, upper_seismogenic_depth, lower_seismogenic_depth, dip): """ Get surface main vertexes. Parameters are the same as for :meth:`from_fault_data`, excluding mesh spacing. :returns: Instance of :class:`~openquake.hazardlib.geo.polygon.Polygon` describing the surface projection of the simple fault with specified parameters. """ # Similar to :meth:`from_fault_data`, we just don't resample edges dip_tan = math.tan(math.radians(dip)) hdist_top = upper_seismogenic_depth / dip_tan hdist_bottom = lower_seismogenic_depth / dip_tan strike = fault_trace[0].azimuth(fault_trace[-1]) azimuth = (strike + 90.0) % 360 # Collect coordinates of vertices on the top and bottom edge lons = [] lats = [] for point in fault_trace.points: top_edge_point = point.point_at(hdist_top, 0, azimuth) bottom_edge_point = point.point_at(hdist_bottom, 0, azimuth) lons.append(top_edge_point.longitude) lats.append(top_edge_point.latitude) lons.append(bottom_edge_point.longitude) lats.append(bottom_edge_point.latitude) lons = numpy.array(lons, float) lats = numpy.array(lats, float) return lons, lats
@classmethod
[docs] def surface_projection_from_fault_data(cls, fault_trace, upper_seismogenic_depth, lower_seismogenic_depth, dip): """ Get a surface projection of the simple fault surface. Parameters are the same as for :meth:`from_fault_data`, excluding mesh spacing. :returns: Instance of :class:`~openquake.hazardlib.geo.polygon.Polygon` describing the surface projection of the simple fault with specified parameters. """ lons, lats = cls.get_surface_vertexes(fault_trace, upper_seismogenic_depth, lower_seismogenic_depth, dip) return Mesh(lons, lats, depths=None).get_convex_hull()
[docs] def get_width(self): """ Return surface's width (that is surface extension along the dip direction) in km. The width is computed as the average width along the surface. See :meth:`openquake.hazardlib.geo.mesh.RectangularMesh.get_mean_width` """ # calculate width only along the first mesh column, because # width is uniform for simple faults left_column = self.get_mesh()[:, 0:2] return left_column.get_mean_width()