Source code for openquake.hazardlib.gsim.base

# The Hazard Library
# Copyright (C) 2012-2014, GEM Foundation
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""
Module :mod:`openquake.hazardlib.gsim.base` defines base classes for
different kinds of :class:`ground shaking intensity models
<GroundShakingIntensityModel>`.
"""
from __future__ import division

import abc
import math
import warnings
import functools

import scipy.stats
from scipy.special import ndtr
import numpy

from openquake.hazardlib import const
from openquake.hazardlib import imt as imt_module


class NotVerifiedWarning(UserWarning):
    """
    Raised when a non verified GSIM is instantiated
    """


# the builtin DeprecationWarning has been silenced in Python 2.7
class DeprecationWarning(UserWarning):
    """
    Raised the first time a deprecated function is called
    """


def deprecated(message):
    """
    Return a decorator to make deprecated functions.

    :param message:
        the message to print the first time the
        deprecated function is used.

    Here is an example of usage:

    >>> @deprecated('Use new_function instead')
    ... def old_function():
    ...     'Do something'
    """
    def _deprecated(func):
        func.called = False
        msg = '%s.%s has been deprecated. %s' % (
            func.__module__, func.__name__, message)

        @functools.wraps(func)
        def wrapper(*args, **kw):
            if not func.called:
                warnings.warn(msg, DeprecationWarning, stacklevel=2)
                func.called = True
            return func(*args, **kw)
        return wrapper
    return _deprecated


class MetaGSIM(abc.ABCMeta):
    """
    Metaclass providing a warning on instantiation mechanism. A
    GroundShakingIntensityModel subclass with an attribute deprecated=True
    will print a deprecation warning when instantiated. Moreover, as
    subclass with an attribute non_verified=True will print a UserWarning.
    """
    def __call__(cls, *args, **kw):
        if getattr(cls, 'deprecated', False):
            msg = '%s is deprecated - use %s instead' % (
                cls.__name__, cls.__base__.__name__)
            warnings.warn(msg, DeprecationWarning)
        if getattr(cls, 'non_verified', False):
            msg = ('%s is not independently verified - the user is liable '
                   'for their application') % cls.__name__
            warnings.warn(msg, NotVerifiedWarning)
        return super(MetaGSIM, cls).__call__(*args, **kw)


@functools.total_ordering
[docs]class GroundShakingIntensityModel(object): """ Base class for all the ground shaking intensity models. A Ground Shaking Intensity Model (GSIM) defines a set of equations for computing mean and standard deviation of a Normal distribution representing the variability of an intensity measure (or of its logarithm) at a site given an earthquake rupture. This class is not intended to be subclassed directly, instead the actual GSIMs should subclass either :class:`GMPE` or :class:`IPE`. Subclasses of both must implement :meth:`get_mean_and_stddevs` and all the class attributes with names starting from ``DEFINED_FOR`` and ``REQUIRES``. """ __metaclass__ = MetaGSIM #: Reference to a #: :class:`tectonic region type <openquake.hazardlib.const.TRT>` this GSIM #: is defined for. One GSIM can implement only one tectonic region type. DEFINED_FOR_TECTONIC_REGION_TYPE = abc.abstractproperty() #: Set of :mod:`intensity measure types <openquake.hazardlib.imt>` #this GSIM can #: calculate. A set should contain classes from module #: :mod:`openquake.hazardlib.imt`. DEFINED_FOR_INTENSITY_MEASURE_TYPES = abc.abstractproperty() #: Reference to a :class:`intensity measure component type #: <openquake.hazardlib.const.IMC>` this GSIM can calculate mean #: and standard #: deviation for. DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = abc.abstractproperty() #: Set of #: :class:`standard deviation types <openquake.hazardlib.const.StdDev>` #: this GSIM can calculate. DEFINED_FOR_STANDARD_DEVIATION_TYPES = abc.abstractproperty() #: Set of site parameters names this GSIM needs. The set should include #: strings that match names of the attributes of a :class:`site #: <openquake.hazardlib.site.Site>` object. #: Those attributes are then available in the #: :class:`SitesContext` object with the same names. REQUIRES_SITES_PARAMETERS = abc.abstractproperty() #: Set of rupture parameters (excluding distance information) required #: by GSIM. Supported parameters are: #: #: ``mag`` #: Magnitude of the rupture. #: ``dip`` #: Rupture's surface dip angle in decimal degrees. #: ``rake`` #: Angle describing the slip propagation on the rupture surface, #: in decimal degrees. See :mod:`~openquake.hazardlib.geo.nodalplane` #: for more detailed description of dip and rake. #: ``ztor`` #: Depth of rupture's top edge in km. See #: :meth:`~openquake.hazardlib.geo.surface.base.BaseQuadrilateralSurface.get_top_edge_depth`. #: #: These parameters are available from the :class:`RuptureContext` object #: attributes with same names. REQUIRES_RUPTURE_PARAMETERS = abc.abstractproperty() #: Set of types of distance measures between rupture and sites. Possible #: values are: #: #: ``rrup`` #: Closest distance to rupture surface. See #: :meth:`~openquake.hazardlib.geo.surface.base.BaseQuadrilateralSurface.get_min_distance`. #: ``rjb`` #: Distance to rupture's surface projection. See #: :meth:`~openquake.hazardlib.geo.surface.base.BaseQuadrilateralSurface.get_joyner_boore_distance`. #: ``rx`` #: Perpendicular distance to rupture top edge projection. #: See :meth:`~openquake.hazardlib.geo.surface.base.BaseQuadrilateralSurface.get_rx_distance`. #: #: All the distances are available from the :class:`DistancesContext` #: object attributes with same names. Values are in kilometers. REQUIRES_DISTANCES = abc.abstractproperty() @abc.abstractmethod
[docs] def get_mean_and_stddevs(self, sites, rup, dists, imt, stddev_types): """ Calculate and return mean value of intensity distribution and it's standard deviation. Method must be implemented by subclasses. :param sites: Instance of :class:`SitesContext` with parameters of sites collection assigned to respective values as numpy arrays. Only those attributes that are listed in class' :attr:`REQUIRES_SITES_PARAMETERS` set are available. :param rup: Instance of :class:`RuptureContext` with parameters of a rupture assigned to respective values. Only those attributes that are listed in class' :attr:`REQUIRES_RUPTURE_PARAMETERS` set are available. :param dists: Instance of :class:`DistancesContext` with values of distance measures between the rupture and each site of the collection assigned to respective values as numpy arrays. Only those attributes that are listed in class' :attr:`REQUIRES_DISTANCES` set are available. :param imt: An instance (not a class) of intensity measure type. See :mod:`openquake.hazardlib.imt`. :param stddev_types: List of standard deviation types, constants from :class:`openquake.hazardlib.const.StdDev`. Method result value should include standard deviation values for each of types in this list. :returns: Method should return a tuple of two items. First item should be a numpy array of floats -- mean values of respective component of a chosen intensity measure type, and the second should be a list of numpy arrays of standard deviation values for the same single component of the same single intensity measure type, one array for each type in ``stddev_types`` parameter, preserving the order. Combining interface to mean and standard deviation values in a single method allows to avoid redoing the same intermediate calculations if there are some shared between stddev and mean formulae without resorting to keeping any sort of internal state (and effectively making GSIM not reenterable). However it is advised to split calculation of mean and stddev values and make ``get_mean_and_stddevs()`` just combine both (and possibly compute interim steps). """
[docs] def get_poes(self, sctx, rctx, dctx, imt, imls, truncation_level): """ Calculate and return probabilities of exceedance (PoEs) of one or more intensity measure levels (IMLs) of one intensity measure type (IMT) for one or more pairs "site -- rupture". :param sctx: An instance of :class:`SitesContext` with sites information to calculate PoEs on. :param rctx: An instance of :class:`RuptureContext` with a single rupture information. :param dctx: An instance of :class:`DistancesContext` with information about the distances between sites and a rupture. All three contexts (``sctx``, ``rctx`` and ``dctx``) must conform to each other. The easiest way to get them is to call :meth:`make_contexts`. :param imt: An intensity measure type object (that is, an instance of one of classes from :mod:`openquake.hazardlib.imt`). :param imls: List of interested intensity measure levels (of type ``imt``). :param truncation_level: Can be ``None``, which means that the distribution of intensity is treated as Gaussian distribution with possible values ranging from minus infinity to plus infinity. When set to zero, the mean intensity is treated as an exact value (standard deviation is not even computed for that case) and resulting array contains 0 in places where IMT is strictly lower than the mean value of intensity and 1.0 where IMT is equal or greater. When truncation level is positive number, the intensity distribution is processed as symmetric truncated Gaussian with range borders being ``mean - truncation_level * stddev`` and ``mean + truncation_level * stddev``. That is, the truncation level expresses how far the range borders are from the mean value and is defined in units of sigmas. The resulting PoEs for that mode are values of complementary cumulative distribution function of that truncated Gaussian applied to IMLs. :returns: A dictionary of the same structure as parameter ``imts`` (see above). Instead of lists of IMLs values of the dictionaries have 2d numpy arrays of corresponding PoEs, first dimension represents sites and the second represents IMLs. :raises ValueError: If truncation level is not ``None`` and neither non-negative float number, and if ``imts`` dictionary contain wrong or unsupported IMTs (see :attr:`DEFINED_FOR_INTENSITY_MEASURE_TYPES`). """ if truncation_level is not None and truncation_level < 0: raise ValueError('truncation level must be zero, positive number ' 'or None') self._check_imt(imt) if truncation_level == 0: # zero truncation mode, just compare imls to mean imls = self.to_distribution_values(imls) mean, _ = self.get_mean_and_stddevs(sctx, rctx, dctx, imt, []) mean = mean.reshape(mean.shape + (1, )) return (imls <= mean).astype(float) else: # use real normal distribution assert (const.StdDev.TOTAL in self.DEFINED_FOR_STANDARD_DEVIATION_TYPES) imls = self.to_distribution_values(imls) mean, [stddev] = self.get_mean_and_stddevs(sctx, rctx, dctx, imt, [const.StdDev.TOTAL]) mean = mean.reshape(mean.shape + (1, )) stddev = stddev.reshape(stddev.shape + (1, )) values = (imls - mean) / stddev if truncation_level is None: return _norm_sf(values) else: return _truncnorm_sf(truncation_level, values)
[docs] def disaggregate_poe(self, sctx, rctx, dctx, imt, iml, truncation_level, n_epsilons): """ Disaggregate (separate) PoE of ``iml`` in different contributions each coming from ``n_epsilons`` distribution bins. If ``truncation_level = 3``, ``n_epsilons = 3``, bin edges are ``-3 .. -1``, ``-1 .. +1`` and ``+1 .. +3``. :param n_epsilons: Integer number of bins to split truncated Gaussian distribution to. Other parameters are the same as for :meth:`get_poes`, with differences that ``iml`` is only one single intensity level and ``truncation_level`` is required to be positive. :returns: Contribution to probability of exceedance of ``iml`` coming from different sigma bands in a form of 1d numpy array with ``n_epsilons`` floats between 0 and 1. """ if not truncation_level > 0: raise ValueError('truncation level must be positive') self._check_imt(imt) # compute mean and standard deviations mean, [stddev] = self.get_mean_and_stddevs(sctx, rctx, dctx, imt, [const.StdDev.TOTAL]) # compute iml value with respect to standard (mean=0, std=1) # normal distributions iml = self.to_distribution_values(iml) standard_imls = (iml - mean) / stddev distribution = scipy.stats.truncnorm(- truncation_level, truncation_level) epsilons = numpy.linspace(- truncation_level, truncation_level, n_epsilons + 1) # compute epsilon bins contributions contribution_by_bands = (distribution.cdf(epsilons[1:]) - distribution.cdf(epsilons[:-1])) # take the minimum epsilon larger than standard_iml iml_bin_indices = numpy.searchsorted(epsilons, standard_imls) return numpy.array([ # take full disaggregated distribution for the case of # ``iml <= mean - truncation_level * stddev`` contribution_by_bands if idx == 0 else # take zeros if ``iml >= mean + truncation_level * stddev`` numpy.zeros(n_epsilons) if idx >= n_epsilons + 1 else # for other cases (when ``iml`` falls somewhere in the # histogram): numpy.concatenate(( # take zeros for bins that are on the left hand side # from the bin ``iml`` falls into, numpy.zeros(idx - 1), # ... area of the portion of the bin containing ``iml`` # (the portion is limited on the left hand side by # ``iml`` and on the right hand side by the bin edge), [distribution.sf(standard_imls[i]) - contribution_by_bands[idx:].sum()], # ... and all bins on the right go unchanged. contribution_by_bands[idx:] )) for i, idx in enumerate(iml_bin_indices) ])
@abc.abstractmethod
[docs] def to_distribution_values(self, values): """ Convert a list or array of values in units of IMT to a numpy array of values of intensity measure distribution (like taking the natural logarithm for :class:`GMPE`). This method is implemented by both :class:`GMPE` and :class:`IPE` so there is no need to override it in actual GSIM implementations. """
@abc.abstractmethod
[docs] def to_imt_unit_values(self, values): """ Convert a list or array of values of intensity measure distribution (like ones returned from :meth:`get_mean_and_stddevs`) to values in units of IMT. This is the opposite operation to :meth:`to_distribution_values`. This method is implemented by both :class:`GMPE` and :class:`IPE` so there is no need to override it in actual GSIM implementations. """
[docs] def make_contexts(self, site_collection, rupture): """ Create context objects for given site collection and rupture. :param site_collection: Instance of :class:`openquake.hazardlib.site.SiteCollection`. :param rupture: Instance of :class:`~openquake.hazardlib.source.rupture.Rupture` (or subclass of :class:`~openquake.hazardlib.source.rupture.BaseProbabilisticRupture`). :returns: Tuple of three items: sites context, rupture context and distances context, that is, instances of :class:`SitesContext`, :class:`RuptureContext` and :class:`DistancesContext` in a specified order. Only those values that are required by GSIM are filled in in contexts. :raises ValueError: If any of declared required parameters (that includes site, rupture and distance parameters) is unknown. """ dctx = DistancesContext() for param in self.REQUIRES_DISTANCES: if param == 'rrup': dist = rupture.surface.get_min_distance(site_collection.mesh) elif param == 'rx': dist = rupture.surface.get_rx_distance(site_collection.mesh) elif param == 'rjb': dist = rupture.surface.get_joyner_boore_distance( site_collection.mesh ) elif param == 'rhypo': dist = rupture.hypocenter.distance_to_mesh( site_collection.mesh ) elif param == 'repi': dist = rupture.hypocenter.distance_to_mesh( site_collection.mesh, with_depths=False ) else: raise ValueError('%s requires unknown distance measure %r' % (type(self).__name__, param)) setattr(dctx, param, dist) sctx = SitesContext() for param in self.REQUIRES_SITES_PARAMETERS: try: value = getattr(site_collection, param) except AttributeError: raise ValueError('%s requires unknown site parameter %r' % (type(self).__name__, param)) setattr(sctx, param, value) rctx = RuptureContext() for param in self.REQUIRES_RUPTURE_PARAMETERS: if param == 'mag': value = rupture.mag elif param == 'strike': value = rupture.surface.get_strike() elif param == 'dip': value = rupture.surface.get_dip() elif param == 'rake': value = rupture.rake elif param == 'ztor': value = rupture.surface.get_top_edge_depth() elif param == 'hypo_lon': value = rupture.hypocenter.longitude elif param == 'hypo_lat': value = rupture.hypocenter.latitude elif param == 'hypo_depth': value = rupture.hypocenter.depth elif param == 'width': value = rupture.surface.get_width() else: raise ValueError('%s requires unknown rupture parameter %r' % (type(self).__name__, param)) setattr(rctx, param, value) return sctx, rctx, dctx
def _check_imt(self, imt): """ Make sure that ``imt`` is valid and is supported by this GSIM. """ if not issubclass(type(imt), imt_module._IMT): raise ValueError('imt must be an instance of IMT subclass') if not type(imt) in self.DEFINED_FOR_INTENSITY_MEASURE_TYPES: raise ValueError('imt %s is not supported by %s' % (type(imt).__name__, type(self).__name__)) def __lt__(self, other): """ The GSIMs are ordered according to their name """ return self.__class__.__name__ < other.__class__.__name__ def __eq__(self, other): """ The GSIMs are equal if their names are equal """ return self.__class__.__name__ == other.__class__.__name__
def _truncnorm_sf(truncation_level, values): """ Survival function for truncated normal distribution. Assumes zero mean, standard deviation equal to one and symmetric truncation. :param truncation_level: Positive float number representing the truncation on both sides around the mean, in units of sigma. :param values: Numpy array of values as input to a survival function for the given distribution. :returns: Numpy array of survival function results in a range between 0 and 1. >>> from scipy.stats import truncnorm >>> truncnorm(-3, 3).sf(0.12345) == _truncnorm_sf(3, 0.12345) True """ # notation from http://en.wikipedia.org/wiki/Truncated_normal_distribution. # given that mu = 0 and sigma = 1, we have alpha = a and beta = b. # "CDF" in comments refers to cumulative distribution function # of non-truncated distribution with that mu and sigma values. # assume symmetric truncation, that is ``a = - truncation_level`` # and ``b = + truncation_level``. # calculate CDF of b phi_b = ndtr(truncation_level) # calculate Z as ``Z = CDF(b) - CDF(a)``, here we assume that # ``CDF(a) == CDF(- truncation_level) == 1 - CDF(b)`` z = phi_b * 2 - 1 # calculate the result of survival function of ``values``, # and restrict it to the interval where probability is defined -- # 0..1. here we use some transformations of the original formula # that is ``SF(x) = 1 - (CDF(x) - CDF(a)) / Z`` in order to minimize # number of arithmetic operations and function calls: # ``SF(x) = (Z - CDF(x) + CDF(a)) / Z``, # ``SF(x) = (CDF(b) - CDF(a) - CDF(x) + CDF(a)) / Z``, # ``SF(x) = (CDF(b) - CDF(x)) / Z``. return ((phi_b - ndtr(values)) / z).clip(0.0, 1.0) def _norm_sf(values): """ Survival function for normal distribution. Assumes zero mean and standard deviation equal to one. ``values`` parameter and the return value are the same as in :func:`_truncnorm_sf`. >>> from scipy.stats import norm >>> norm.sf(0.12345) == _norm_sf(0.12345) True """ # survival function by definition is ``SF(x) = 1 - CDF(x)``, # which is equivalent to ``SF(x) = CDF(- x)``, since (given # that the normal distribution is symmetric with respect to 0) # the integral between ``[x, +infinity]`` (that is the survival # function) is equal to the integral between ``[-infinity, -x]`` # (that is the CDF at ``- x``). return ndtr(- values)
[docs]class GMPE(GroundShakingIntensityModel): """ Ground-Motion Prediction Equation is a subclass of generic :class:`GroundShakingIntensityModel` with a distinct feature that the intensity values are log-normally distributed. Method :meth:`~GroundShakingIntensityModel.get_mean_and_stddevs` of actual GMPE implementations is supposed to return the mean value as a natural logarithm of intensity. """
[docs] def to_distribution_values(self, values): """ Returns numpy array of natural logarithms of ``values``. """ return numpy.log(values)
[docs] def to_imt_unit_values(self, values): """ Returns numpy array of exponents of ``values``. """ return numpy.exp(values)
[docs]class IPE(GroundShakingIntensityModel): """ Intensity Prediction Equation is a subclass of generic :class:`GroundShakingIntensityModel` which is suitable for intensity measures that are normally distributed. In particular, for :class:`~openquake.hazardlib.imt.MMI`. """
[docs] def to_distribution_values(self, values): """ Returns numpy array of ``values`` without any conversion. """ return numpy.array(values, dtype=float)
[docs] def to_imt_unit_values(self, values): """ Returns numpy array of ``values`` without any conversion. """ return numpy.array(values, dtype=float)
class BaseContext(object): """ Base class for context object. """ __metaclass__ = abc.ABCMeta def __eq__(self, other): """ Return True if ``other`` has same attributes with same values. """ if isinstance(other, self.__class__): if self.__slots__ == other.__slots__: self_other = [ numpy.all( getattr(self, s, None) == getattr(other, s, None) ) for s in self.__slots__ ] return numpy.all(self_other) return False
[docs]class SitesContext(BaseContext): """ Sites calculation context for ground shaking intensity models. Instances of this class are passed into :meth:`GroundShakingIntensityModel.get_mean_and_stddevs`. They are intended to represent relevant features of the sites collection. Every GSIM class is required to declare what :attr:`sites parameters <GroundShakingIntensityModel.REQUIRES_SITES_PARAMETERS>` does it need. Only those required parameters are made available in a result context object. """ __slots__ = ('vs30', 'vs30measured', 'z1pt0', 'z2pt5', 'lons', 'lats')
[docs]class DistancesContext(BaseContext): """ Distances context for ground shaking intensity models. Instances of this class are passed into :meth:`GroundShakingIntensityModel.get_mean_and_stddevs`. They are intended to represent relevant distances between sites from the collection and the rupture. Every GSIM class is required to declare what :attr:`distance measures <GroundShakingIntensityModel.REQUIRES_DISTANCES>` does it need. Only those required values are calculated and made available in a result context object. """ __slots__ = ('rrup', 'rx', 'rjb', 'rhypo', 'repi')
[docs]class RuptureContext(BaseContext): """ Rupture calculation context for ground shaking intensity models. Instances of this class are passed into :meth:`GroundShakingIntensityModel.get_mean_and_stddevs`. They are intended to represent relevant features of a single rupture. Every GSIM class is required to declare what :attr:`rupture parameters <GroundShakingIntensityModel.REQUIRES_RUPTURE_PARAMETERS>` does it need. Only those required parameters are made available in a result context object. """ __slots__ = ( 'mag', 'strike', 'dip', 'rake', 'ztor', 'hypo_lon', 'hypo_lat', 'hypo_depth', 'width' )
[docs]class CoeffsTable(object): r""" Instances of :class:`CoeffsTable` encapsulate tables of coefficients corresponding to different IMTs. Tables are defined in a space-separated tabular form in a simple string literal (heading and trailing whitespace does not matter). The first column in the table must be named "IMT" (or "imt") and thus should represent IMTs: >>> CoeffsTable(table='''imf z ... pga 1''') Traceback (most recent call last): ... ValueError: first column in a table must be IMT Names of other columns are used as coefficients dicts keys. The values in the first column should correspond to real intensity measure types, see :mod:`openquake.hazardlib.imt`: >>> CoeffsTable(table='''imt z ... pgx 2''') Traceback (most recent call last): ... ValueError: unknown IMT 'PGX' Note that :class:`CoeffsTable` only accepts keyword argumets: >>> CoeffsTable() Traceback (most recent call last): ... TypeError: CoeffsTable requires "table" kwarg >>> CoeffsTable(table='', foo=1) Traceback (most recent call last): ... TypeError: CoeffsTable got unexpected kwargs: {'foo': 1} If there are :class:`~openquake.hazardlib.imt.SA` IMTs in the table, they are not referenced by name, because they require parametrization: >>> CoeffsTable(table='''imt x ... sa 15''') Traceback (most recent call last): ... ValueError: specify period as float value to declare SA IMT >>> CoeffsTable(table='''imt x ... 0.1 20''') Traceback (most recent call last): ... TypeError: attribute "sa_damping" is required for tables defining SA So proper table defining SA looks like this: >>> ct = CoeffsTable(sa_damping=5, table=''' ... imt a b c d ... pga 1 2.4 -5 0.01 ... pgd 7.6 12 0 44.1 ... 0.1 10 20 30 40 ... 1.0 1 2 3 4 ... 10 2 4 6 8 ... ''') Table objects could be indexed by IMT objects (this returns a dictionary of coefficients): >>> from openquake.hazardlib import imt >>> ct[imt.PGA()] == dict(a=1, b=2.4, c=-5, d=0.01) True >>> ct[imt.PGD()] == dict(a=7.6, b=12, c=0, d=44.1) True >>> ct[imt.SA(damping=5, period=0.1)] == dict(a=10, b=20, c=30, d=40) True >>> ct[imt.PGV()] Traceback (most recent call last): ... KeyError: PGV() >>> ct[imt.SA(1.0, 4)] Traceback (most recent call last): ... KeyError: SA(period=1.0, damping=4) Table of coefficients for spectral acceleration could be indexed by instances of :class:`openquake.hazardlib.imt.SA` with period value that is not specified in the table. The coefficients then get interpolated between the ones for closest higher and closest lower period. That scaling of coefficients works in a logarithmic scale of periods and only within the same damping: >>> '%.5f' % ct[imt.SA(period=0.2, damping=5)]['a'] '7.29073' >>> '%.5f' % ct[imt.SA(period=0.9, damping=5)]['c'] '4.23545' >>> '%.5f' % ct[imt.SA(period=5, damping=5)]['c'] '5.09691' >>> ct[imt.SA(period=0.9, damping=15)] Traceback (most recent call last): ... KeyError: SA(period=0.9, damping=15) Extrapolation is not possible: >>> ct[imt.SA(period=0.01, damping=5)] Traceback (most recent call last): ... KeyError: SA(period=0.01, damping=5) """ def __init__(self, **kwargs): if not 'table' in kwargs: raise TypeError('CoeffsTable requires "table" kwarg') table = kwargs.pop('table').strip().splitlines() sa_damping = kwargs.pop('sa_damping', None) if kwargs: raise TypeError('CoeffsTable got unexpected kwargs: %r' % kwargs) header = table.pop(0).split() if not header[0].upper() == "IMT": raise ValueError('first column in a table must be IMT') coeff_names = header[1:] self.sa_coeffs = {} self.non_sa_coeffs = {} for row in table: row = row.split() imt_name = row[0].upper() if imt_name == 'SA': raise ValueError('specify period as float value ' 'to declare SA IMT') imt_coeffs = dict(zip(coeff_names, map(float, row[1:]))) try: sa_period = float(imt_name) except: if not hasattr(imt_module, imt_name): raise ValueError('unknown IMT %r' % imt_name) imt = getattr(imt_module, imt_name)() self.non_sa_coeffs[imt] = imt_coeffs else: if sa_damping is None: raise TypeError('attribute "sa_damping" is required ' 'for tables defining SA') imt = imt_module.SA(sa_period, sa_damping) self.sa_coeffs[imt] = imt_coeffs def __getitem__(self, imt): """ Return a dictionary of coefficients corresponding to ``imt`` from this table (if there is a line for requested IMT in it), or the dictionary of interpolated coefficients, if ``imt`` is of type :class:`~openquake.hazardlib.imt.SA` and interpolation is possible. :raises KeyError: If ``imt`` is not available in the table and no interpolation can be done. """ if not isinstance(imt, imt_module.SA): return self.non_sa_coeffs[imt] try: return self.sa_coeffs[imt] except KeyError: pass max_below = min_above = None for unscaled_imt in self.sa_coeffs.keys(): if unscaled_imt.damping != imt.damping: continue if unscaled_imt.period > imt.period: if min_above is None or unscaled_imt.period < min_above.period: min_above = unscaled_imt elif unscaled_imt.period < imt.period: if max_below is None or unscaled_imt.period > max_below.period: max_below = unscaled_imt if max_below is None or min_above is None: raise KeyError(imt) # ratio tends to 1 when target period tends to a minimum # known period above and to 0 if target period is close # to maximum period below. ratio = ((math.log(imt.period) - math.log(max_below.period)) / (math.log(min_above.period) - math.log(max_below.period))) max_below = self.sa_coeffs[max_below] min_above = self.sa_coeffs[min_above] return dict( (co, (min_above[co] - max_below[co]) * ratio + max_below[co]) for co in max_below.keys() )