
OpenQuake for Advanced Users
Documentation

Release 3.18.0

Michele Simionato, Anirudh Rao

Oct 25, 2023

CONTENTS

1 General 3

2 Common mistakes: bad configuration parameters 5
2.1 The quadratic parameters . 5
2.2 Maximum distance . 6
2.3 pointsource_distance . 7
2.4 The linear parameters: width_of_mfd_bin and intensity levels 9
2.5 concurrent_tasks parameter . 9

3 Developing with the engine 11
3.1 Prerequisites . 11
3.2 The first thing to do . 12
3.3 Understanding the engine . 12
3.4 Running calculations programmatically . 13
3.5 Case study: computing the impact of a source on a site 13
3.6 Working with GMPEs directly: the ContextMaker 15
3.7 Working with verification tables . 17
3.8 Running the engine tests . 18

4 Architecture of the OpenQuake engine 21
4.1 Components of the OpenQuake Engine . 21
4.2 Design principles . 23

5 How the parallelization works in the engine 25
5.1 How to use openquake.baselib.parallel . 27

6 Extracting data from calculations 31
6.1 Plotting . 33
6.2 Extracting disaggregation outputs . 34
6.3 Extracting ruptures . 35

7 Reading outputs with pandas 37
7.1 Example: how many events per magnitude? . 38

i

8 Limitations of Floating-point Arithmetic 41

9 Some useful oq commands 45
9.1 oq zip . 48
9.2 Importing a remote calculation . 49
9.3 plotting commands . 50
9.4 prepare_site_model . 51
9.5 Reducing the source model . 52
9.6 Comparing hazard results . 53
9.7 Showing calculation attributes . 54
9.8 Mosaic-related commands . 55

9.8.1 Running a PSHA analysis . 55
9.8.2 Sampling ruptures . 56
9.8.3 Sampling ground motion fields . 57

10 Logic Trees 59
10.1 extendModel . 59
10.2 The logic tree demo . 63
10.3 The concept of effective realizations . 66
10.4 Reduction of the logic tree . 67
10.5 How to analyze the logic tree of a calculation without running the calculation . . . 69

11 Source Specific Logic Trees 71
11.1 Extracting the hazard curves . 72
11.2 Sampling of the logic tree . 72

12 Logic tree sampling strategies 73
12.1 GMPE logic trees with weighted IMTs . 74

13 Classical PSHA 77
13.1 Reducing a calculation . 77
13.2 Classical PSHA for Europe (SHARE) . 78
13.3 Collapsing the GMPE logic tree . 80

14 Parametric GMPEs 81
14.1 Signature of a GMPE class . 81
14.2 GMPETable . 82
14.3 File-dependent GMPEs . 83
14.4 MultiGMPE . 85
14.5 GenericGmpeAvgSA . 86
14.6 ModifiableGMPE . 86

15 MultiPointSources 87

16 The point source gridding approximation 91
16.1 Application: making the Canada model 26x faster 92

ii

16.2 How to determine the “right” value for the ps_grid_spacing parameter 94

17 disagg_by_src 97

18 The post-processing framework and Vector-valued PSHA calculations 101
18.1 The conditional spectrum post-processor . 102

19 Event Based and Scenarios 105
19.1 Understanding the hazard . 105
19.2 region_grid_spacing . 106
19.3 Collapsing of branches . 107
19.4 Using collect_rlzs=true in the risk calculation 107
19.5 Splitting the calculation into subregions . 108
19.6 Trimming of the logic-trees or sampling of the branches 108
19.7 ignore_covs vs ignore_master_seed . 108

20 The asset loss table 111
20.1 The Probable Maximum Loss (PML) and the loss curves 112

20.1.1 Aggregate loss curves . 113
20.2 Aggregating by multiple tags . 115

21 Rupture sampling: how does it work? 119
21.1 The difference between full enumeration and sampling 121

22 Rupture sampling: how to get it wrong 123

23 Extra tips specific to event based calculations 127
23.1 Convergency of the GMFs for non-trivial logic trees 127

24 The concept of “mean” ground motion field 129
24.1 Mean ground motion field by GMPE . 129
24.2 Mean ground motion field by event . 130
24.3 Single-rupture estimated median ground motion field 132
24.4 Case study: GMFs for California . 132

25 Extended consequences 135
25.1 discrete_damage_distribution . 136
25.2 The EventBasedDamage demo . 137
25.3 The ScenarioDamage demo . 139
25.4 Taxonomy mapping . 140

26 Correlation of Ground Motion Fields 143

27 Scenarios from ShakeMaps 145
27.1 Running the Calculation . 145
27.2 Correlation . 147

iii

27.3 Performance Considerations . 148

28 Reinsurance calculations 151
28.1 Input files . 152

28.1.1 Exposure file . 152
28.1.2 Insurance and reinsurance information (reinsurance.xml) 154
28.1.3 Policy information (policy.csv) . 156
28.1.4 Configuration file job.ini . 156

28.2 Output files . 157

29 How the hazard sites are determined 161

30 Risk profiles 163
30.1 Single-line commands . 166
30.2 Caveat: GMFs are split-dependent . 167

31 Special features of the engine 169
31.1 Sensitivity analysis . 169
31.2 The custom_site_id . 170
31.3 The minimum_distance parameter . 170
31.4 Equivalent Epicenter Distance Approximation 170
31.5 Ruptures in CSV format . 171
31.6 max_sites_disagg . 172

iv

OpenQuake for Advanced Users Documentation, Release 3.18.0

PDF version 3.18: https://docs.openquake.org/oq-engine/3.18/PDF/
OpenQuakeforAdvancedUsers.pdf

Contents:

CONTENTS 1

https://docs.openquake.org/oq-engine/3.18/PDF/OpenQuakeforAdvancedUsers.pdf
https://docs.openquake.org/oq-engine/3.18/PDF/OpenQuakeforAdvancedUsers.pdf

OpenQuake for Advanced Users Documentation, Release 3.18.0

2 CONTENTS

CHAPTER

ONE

GENERAL

This manual is for advanced users, i.e. people who already know how to use the engine and have
already read the official manual cover-to-cover. If you have just started on your journey of using and
working with the OpenQuake engine, this manual is probably NOT for you. Beginners should study
the official manual first. This manual is intended for users who are either running large calculations
or those who are interested in programatically interacting with the datastore.

For the purposes of this manual a calculation is large if it cannot be run, i.e. if it runs out of memory,
it fails with strange errors or it just takes too long to complete.

There are various reasons why a calculation can be too large. 90% of the times it is because the
user is making some mistakes and she is trying to run a calculation larger than she really needs. In
the remaining 10% of the times the calculation is genuinely large and the solution is to buy a larger
machine, or to ask the OpenQuake developers to optimize the engine for the specific calculation
that is giving issues.

The first things to do when you have a large calculation is to run the command oq info --report
job.ini, that will tell you essential information to estimate the size of the full calculation, in
particular the number of hazard sites, the number of ruptures, the number of assets and the most
relevant parameters you are using. If generating the report is slow, it means that there is something
wrong with your calculation and you will never be able to run it completely unless you reduce it.

The single most important parameter in the report is the number of effective ruptures, i.e. the
number of ruptures after distance and magnitude filtering. For instance your report could contain
numbers like the following:

#eff_ruptures 239,556
#tot_ruptures 8,454,592

This is an example of a computation which is potentially large - there are over 8 million ruptures
generated by the model - but that in practice will be very fast, since 97% of the ruptures will be
filtered away. The report gives a conservative estimate, in reality even more ruptures will be dis-
carded.

It is very common to have an unhappy combinations of parameters in the job.ini file, like dis-
cretization parameters that are too small. Then your source model with contain millions and mil-

3

https://www.globalquakemodel.org/single-post/OpenQuake-Engine-Manual

OpenQuake for Advanced Users Documentation, Release 3.18.0

lions of ruptures and the computation will become impossibly slow or it will run out of memory.
By playing with the parameters and producing various reports, one can get an idea of how much a
calculation can be reduced even before running it.

Now, it is a good time to read the section about common mistakes.

4 Chapter 1. General

CHAPTER

TWO

COMMON MISTAKES: BAD CONFIGURATION
PARAMETERS

By far, the most common source of problems with the engine is the choice of parameters in the
job.ini file. It is very easy to make mistakes, because users typically copy the parameters from the
OpenQuake demos. However, the demos are meant to show off all of the features of the engine in
simple calculations, they are not meant for getting performance in large calculations.

2.1 The quadratic parameters

In large calculations, it is essential to tune a few parameters that are really important. Here is a list
of parameters relevant for all calculators:

maximum_distance:
The larger the maximum_distance, the more sources and ruptures will be considered; the
effect is quadratic, i.e. a calculation with maximum_distance=500 km could take up to 6.25
times more time than a calculation with maximum_distance=200 km.

region_grid_spacing:
The hazard sites can be specified by giving a region and a grid step. Clearly the
size of the computation is quadratic with the inverse grid step: a calculation with
region_grid_spacing=1 will be up to 100 times slower than a computation with
region_grid_spacing=10.

area_source_discretization:
Area sources are converted into point sources, by splitting the area region into a grid of
points. The area_source_discretization (in km) is the step of the grid. The computa-
tion time is inversely proportional to the square of the discretization step, i.e. calculation with
area_source_discretization=5 will take up to four times more time than a calculation
with area_source_discretization=10.

rupture_mesh_spacing:
Fault sources are computed by converting the geometry of the fault into a mesh of points; the

5

OpenQuake for Advanced Users Documentation, Release 3.18.0

rupture_mesh_spacing is the parameter determining the size of the mesh. The computa-
tion time is quadratic with the inverse mesh spacing. Using a rupture_mesh_spacing=2
instead of rupture_mesh_spacing=5 will make your calculation up to 6.25 times slower.
Be warned that the engine may complain if the rupture_mesh_spacing is too large.

complex_fault_mesh_spacing:
The same as the rupture_mesh_spacing, but for complex fault sources. If not
specified, the value of rupture_mesh_spacing will be used. This is a common
cause of problems; if you have performance issue you should consider using a larger
complex_fault_mesh_spacing. For instance, if you use a rupture_mesh_spacing=2
for simple fault sources but complex_fault_mesh_spacing=10 for complex fault sources,
your computation can become up to 25 times faster, assuming the complex fault sources are
dominating the computation time.

2.2 Maximum distance

The engine gives users a lot of control on the maximum distance parameter. For instance, you can
have a different maximum distance depending on the tectonic region, like in the following example:

maximum_distance = {'Active Shallow Crust': 200, 'Subduction': 500}

You can also have a magnitude-dependent maximum distance:

maximum_distance = [(5, 0), (6, 100), (7, 200), (8, 300)]

In this case, given a site, the engine will completely discard ruptures with magnitude below 5, keep
ruptures up to 100 km for magnitudes between 5 and 6 (the maximum distance in this magnitude
range will vary linearly between 0 and 100), keep ruptures up to 200 km for magnitudes between
6 and 7 (with maximum_distance increasing linearly from 100 to 200 km from magnitude 6 to
magnitude 7), keep ruptures up to 300 km for magnitudes between 7 and 8 (with maximum_distance
increasing linearly from 200 to 300 km from magnitude 7 to magnitude 8) and discard ruptures for
magnitudes over 8.

You can have both trt-dependent and mag-dependent maximum distance:

maximum_distance = {
'Active Shallow Crust': [(5, 0), (6, 100), (7, 200), (8, 300)],
'Subduction': [(6.5, 300), (9, 500)]}

Given a rupture with tectonic region type trt and magnitude mag, the engine will ignore all sites
over the maximum distance md(trt, mag). The precise value is given via linear interpolation of
the values listed in the job.ini; you can determine the distance as follows:

6 Chapter 2. Common mistakes: bad configuration parameters

OpenQuake for Advanced Users Documentation, Release 3.18.0

>>> from openquake.hazardlib.calc.filters import IntegrationDistance
>>> idist = IntegrationDistance.new('[(4, 0), (6, 100), (7, 200), (8.5,␣
→˓300)]')
>>> interp = idist('TRT')
>>> interp([4.5, 5.5, 6.5, 7.5, 8])
array([25. , 75. , 150. , 233.33333333,

266.66666667])

2.3 pointsource_distance

PointSources (and MultiPointSources and AreaSources, which are split into PointSources and there-
fore are effectively the same thing) are not pointwise for the engine: they actually generate ruptures
with rectangular surfaces which size is determined by the magnitude scaling relationship. The ge-
ometry and position of such rectangles depends on the hypocenter distribution and the nodal plane
distribution of the point source, which are used to model the uncertainties on the hypocenter loca-
tion and on the orientation of the underlying ruptures.

Is the effect of the hypocenter/nodal planes distributions relevant? Not always: in particular, if you
are interested in points that are far away from the rupture the effect is minimal. So if you have a
nodal plane distribution with 20 planes and a hypocenter distribution with 5 hypocenters, the engine
will consider 20 x 5 ruptures and perform 100 times more calculations than needed, since at large
distance the hazard will be more or less the same for each rupture.

To avoid this performance problem there is a pointsource_distance parameter: you can set it
in the job.ini as a dictionary (tectonic region type -> distance in km) or as a scalar (in that case
it is converted into a dictionary {"default": distance} and the same distance is used for all
TRTs). For sites that are more distant than the pointsource_distance plus the rupture radius from
the point source, the engine creates an average rupture by taking weighted means of the parameters
strike, dip, rake and depth from the nodal plane and hypocenter distributions and by rescaling the
occurrence rate. For closer points, all the original ruptures are considered. This approximation (we
call it rupture collapsing because it essentially reduces the number of ruptures) can give a substantial
speedup if the model is dominated by PointSources and there are several nodal planes/hypocenters
in the distribution. In some situations it also makes sense to set

pointsource_distance = 0

to completely remove the nodal plane/hypocenter distributions. For instance the Indonesia model
has 20 nodal planes for each point sources; however such model uses the so-called equiva-
lent distance approximation which considers the point sources to be really pointwise. In this
case the contribution to the hazard is totally independent from the nodal plane and by using
pointsource_distance = 0 one can get exactly the same numbers and run the model in 1
hour instead of 20 hours. Actually, starting from engine 3.3 the engine is smart enough to
recognize the cases where the equivalent distance approximation is used and automatically set
pointsource_distance = 0.

2.3. pointsource_distance 7

special-features.html#equivalent-epicenter-distance-approximation
special-features.html#equivalent-epicenter-distance-approximation

OpenQuake for Advanced Users Documentation, Release 3.18.0

Even if you not using the equivalent distance approximation, the effect of the nodal plane/hypocenter
distribution can be negligible: I have seen cases when setting setting pointsource_distance =
0 changed the result in the hazard maps only by 0.1% and gained an order of magnitude of speedup.
You have to check on a case by case basis.

There is a good example of use of the pointsource_distance in the MultiPointClassicalPSHA
demo. Here we will just show a plot displaying the hazard curve without pointsource_distance
(with ID=-2) and with pointsource_distance=200 km (with ID=-1). As you see they are nearly
identical but the second calculation is ten times faster.

The pointsource_distance is also crucial when using the point source gridding approximation:
then it can be used to speedup calculations even when the nodal plane and hypocenter distributions
are trivial and no speedup would be expected.

NB: the pointsource_distance approximation has changed a lot across engine releases and
you should not expect it to give always the same results. In particular, in engine 3.8 it has been
extended to take into account the fact that small magnitudes will have a smaller collapse distance.
For instance, if you set pointsource_distance=100, the engine will collapse the ruptures over
100 km for the maximum magnitude, but for lower magnitudes the engine will consider a (much)
shorter collapse distance and will collapse a lot more ruptures. This is possible because given a
tectonic region type the engine knows all the GMPEs associated to that tectonic region and can
compute an upper limit for the maximum intensity generated by a rupture at any distance. Then it

8 Chapter 2. Common mistakes: bad configuration parameters

point-source-gridding.html

OpenQuake for Advanced Users Documentation, Release 3.18.0

can invert the curve and given the magnitude and the maximum intensity can determine the collapse
distance for that magnitude.

In engine 3.11, contrarily to all previous releases, finite side effects are not ignored for distance
sites, they are simply averaged over. This gives a better precision. In some case (i.e. the Alaska
model) versions of the engine before 3.11 could give a completely wrong hazard on some sites.
This is now fixed.

Note: setting pointsource_distance=0 does not completely remove finite size effects. If you
want to replace point sources with points you need to also change the magnitude-scaling relationship
to PointMSR. Then the area of the underlying planar ruptures will be set to 1E-4 squared km and
the ruptures will effectively become points.

2.4 The linear parameters: width_of_mfd_bin and inten-
sity levels

The number of ruptures generated by the engine is controlled by the parameter width_of_mfd_bin;
for instance if you raise it from 0.1 to 0.2 you will reduce by half the number of ruptures and double
the speed of the calculation. It is a linear parameter, at least approximately. Classical calculations
are also roughly linear in the number of intensity measure types and levels. A common mistake is
to use too many levels. For instance a configuration like the following one:

intensity_measure_types_and_levels = {
"PGA": logscale(0.001,4.0, 100),
"SA(0.3)": logscale(0.001,4.0, 100),
"SA(1.0)": logscale(0.001,4.0, 100)}

requires computing the PoEs on 300 levels. Is that really what the user wants? It could very well
be that using only 20 levels per each intensity measure type produces good enough results, while
potentially reducing the computation time by a factor of 5.

2.5 concurrent_tasks parameter

There is a last parameter which is worthy of mention, because of its effect on the memory occupation
in the risk calculators and in the event based hazard calculator.

concurrent_tasks:
This is a parameter that you should not set, since in most cases the engine will figure out
the correct value to use. However, in some cases, you may be forced to set it. Typically this
happens in event based calculations, when computing the ground motion fields. If you run
out of memory, increasing this parameter will help, since the engine will produce smaller
tasks. Another case when it may help is when computing hazard statistics with lots of sites
and realizations, since by increasing this parameter the tasks will contain less sites.

2.4. The linear parameters: width_of_mfd_bin and intensity levels 9

OpenQuake for Advanced Users Documentation, Release 3.18.0

Notice that if the number of concurrent_tasks is too big the performance will get worse and the
data transfer will increase: at a certain point the calculation will run out of memory. I have seen this
to happen when generating tens of thousands of tasks. Again, it is best not to touch this parameter
unless you know what you are doing.

10 Chapter 2. Common mistakes: bad configuration parameters

CHAPTER

THREE

DEVELOPING WITH THE ENGINE

Some advanced users are interested in developing with the engine, usually to contribute new GMPEs
and sometimes to submit a bug fix. There are also users interested in implementing their own
customizations of the engine. This part of the manual is for them.

3.1 Prerequisites

It is assumed here that you are a competent scientific Python programmer, i.e. that you have a good
familiarity with the Python ecosystem (including pip and virtualenv) and its scientific stack (numpy,
scipy, h5py, . . .). It should be noticed that since engine v2.0 there is no need to know anything about
databases and web development (unless you want to develop on the WebUI part) so the barrier for
contribution to the engine is much lower than it used to be. However, contributing is still nontrivial,
and it absolutely necessary to know git and the tools of Open Source development in general, in
particular about testing. If this is not the case, you should do some study on your own and come
back later. There is a huge amount of resources on the net about these topics. This manual will
focus solely on the OpenQuake engine and it assumes that you already know how to use it, i.e. you
have read the User Manual first.

Before starting, it may be useful to have an idea of the architecture of the engine and its internal
components, like the DbServer and the WebUI. For that you should read the Architecture of the
OpenQuake engine document.

There are also external tools which are able to interact with the engine, like the QGIS plugin to run
calculations and visualize the outputs and the IPT tool to prepare the required input files (except
the hazard models). Unless you are developing for such tools you can safely ignore them.

11

OpenQuake for Advanced Users Documentation, Release 3.18.0

3.2 The first thing to do

The first thing to do if you want to develop with the engine is to remove any non-development
installation of the engine that you may have. While it is perfectly possible to install on the same
machine both a development and a production instance of the engine (it is enough to configure
the ports of the DbServer and WebUI) it is easier to work with a single instance. In that way you
will have a single code base and no risks of editing the wrong code. A development installation
the engine works as any other development installation in Python: you should clone the engine
repository, create and activate a virtualenv and then perform a pip install -e . from the engine main
directory, as normal. You can find the details here:

https://github.com/gem/oq-engine/blob/engine-3.18/doc/installing/development.md

It is also possible to develop on Windows (https://github.com/gem/oq-engine/blob/engine-3.18/
doc/installing/development.md) but very few people in GEM are doing that, so you are on your
own, should you encounter difficulties. We recommend Linux, but Mac also works.

Since you are going to develop with the engine, you should also install the development dependen-
cies that by default are not installed. They are listed in the setup.py file, and currently (January
2020) they are pytest, flake8, pdbpp, silx and ipython. They are not required but very handy and
recommended. It is the stack we use daily for development.

3.3 Understanding the engine

Once you have the engine installed you can run calculations. We recommend starting from the
demos directory which contains examples of hazard and risk calculations. For instance you could
run the area source demo with the following command:

$ oq run demos/hazard/AreaSourceClassicalPSHA/job.ini

You should notice that we used here the command oq run while the engine manual recommends
the usage of oq engine --run. There is no contradiction. The command oq engine --run is
meant for production usage, but here we are doing development, so the recommended command is
oq run which will will be easier to debug thanks to the flag --pdb, which will start the python de-
bugger should the calculation fail. Since during development is normal to have errors and problems
in the calculation, this ability is invaluable.

If you want to understand what happened during the calculation you should generate the associated
.rst report, which can be seen with the command

$ oq show fullreport

There you will find a lot of interesting information that it is worth studying and we will discuss in
detail in the rest of this manual. The most important section of the report is probably the last one,
titled “Slowest operations”. For that one can understand the bottlenecks of a calculation and, with
experience, he can understand which part of the engine he needs to optimize. Also, it is very useful

12 Chapter 3. Developing with the engine

https://github.com/gem/oq-engine/blob/engine-3.18/doc/installing/development.md
https://github.com/gem/oq-engine/blob/engine-3.18/doc/installing/development.md
https://github.com/gem/oq-engine/blob/engine-3.18/doc/installing/development.md

OpenQuake for Advanced Users Documentation, Release 3.18.0

to play with the parameters of the calculation (like the maximum distance, the area discretization,
the magnitude binning, etc etc) and see how the performance changes. There is also a command to
plot hazard curves and a command to compare hazard curves between different calculations: it is
common to be able to get big speedups simply by changing the input parameters in the job.ini of
the model, without changing much the results.

There a lot of oq commands: if you are doing development you should study all of them. They are
documented here.

3.4 Running calculations programmatically

Starting from engine 3.12 the recommended way to run a job programmaticaly is the following:

>> from openquake.commonlib import logs
>> from openquake.calculators.base import calculators
>> with logs.init('job', 'job_ini') as log: # initialize logs
... calc = calculators(log.get_oqparam(), log.calc_id)
... calc.run() # run the calculator

Then the results can be read from the datastore by using the extract API:

>> from openquake.calculators.extract import extract
>> extract(calc.datastore, 'something')

3.5 Case study: computing the impact of a source on a
site

As an exercise showing off how to use the engine as a library, we will solve the problem of com-
puting the hazard on a given site generated by a given source, with a given GMPE logic tree and a
few parameters, i.e. the intensity measure levels and the maximum distance.

The first step is to specify the site and the parameters; let’s suppose that we want to com-
pute the probability of exceeding a Peak Ground Accelation (PGA) of 0.1g by using the
ToroEtAl2002SHARE GMPE:

>>> from openquake.commonlib import readinput
>>> oq = readinput.get_oqparam(dict(
... calculation_mode='classical',
... sites='15.0 45.2',
... reference_vs30_type='measured',
... reference_vs30_value='600.0',

(continues on next page)

3.4. Running calculations programmatically 13

oq-commands.md

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
... intensity_measure_types_and_levels="{'PGA': [0.1]}",
... investigation_time='50.0',
... gsim='ToroEtAl2002SHARE',
... truncation_level='99.0',
... maximum_distance='200.0'))

Then we need to specify the source:

>>> from openquake.hazardlib import nrml
>>> src = nrml.get('''
... <areaSource
... id="126"
... name="HRAS195"
... >
... <areaGeometry discretization="10">
... <gml:Polygon>
... <gml:exterior>
... <gml:LinearRing>
... <gml:posList>
... 1.5026169E+01 4.5773603E+01
... 1.5650548E+01 4.6176279E+01
... 1.6273108E+01 4.6083465E+01
... 1.6398742E+01 4.6024744E+01
... 1.5947759E+01 4.5648318E+01
... 1.5677179E+01 4.5422577E+01
... </gml:posList>
... </gml:LinearRing>
... </gml:exterior>
... </gml:Polygon>
... <upperSeismoDepth>0</upperSeismoDepth>
... <lowerSeismoDepth>30</lowerSeismoDepth>
... </areaGeometry>
... <magScaleRel>WC1994</magScaleRel>
... <ruptAspectRatio>1</ruptAspectRatio>
... <incrementalMFD binWidth=".2" minMag="4.7">
... <occurRates>
... 1.4731083E-02 9.2946848E-03 5.8645496E-03
... 3.7002807E-03 2.3347193E-03 1.4731083E-03
... 9.2946848E-04 5.8645496E-04 3.7002807E-04
... 2.3347193E-04 1.4731083E-04 9.2946848E-05
... 1.7588460E-05 1.1097568E-05 2.3340307E-06
... </occurRates>
... </incrementalMFD>

(continues on next page)

14 Chapter 3. Developing with the engine

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
... <nodalPlaneDist>
... <nodalPlane dip="5.7596810E+01" probability="1"
... rake="0" strike="6.9033586E+01"/>
... </nodalPlaneDist>
... <hypoDepthDist>
... <hypoDepth depth="1.0200000E+01" probability="1"/>
... </hypoDepthDist>
... </areaSource>
... ''')

Then the hazard curve can be computed as follows:

>>> from openquake.hazardlib.calc.hazard_curve import calc_hazard_curve
>>> from openquake.hazardlib import valid
>>> sitecol = readinput.get_site_collection(oq)
>>> gsims = readinput.get_gsim_lt(oq).values['*']
>>> calc_hazard_curve(sitecol, src, gsims, oq)
<ProbabilityCurve
[[0.00507997]]>

3.6 Working with GMPEs directly: the ContextMaker

If you are an hazard scientist, you will likely want to interact with the GMPE library in openquake.
hazardlib.gsim. The recommended way to do so is in terms of a ContextMaker object.

>>> from openquake.hazardlib.contexts import ContextMaker

In order to instantiate a ContextMaker you first need to populate a dictionary of parameters:

>>> param = dict(maximum_distance=oq.maximum_distance, imtls=oq.imtls,
... truncation_level=oq.truncation_level,
... investigation_time=oq.investigation_time)
>>> cmaker = ContextMaker(src.tectonic_region_type, gsims, param)

Then you can use the ContextMaker to generate context arrays from the sources:

>>> [ctx] = cmaker.from_srcs([src], sitecol)

In our example, there are 15 magnitudes

>>> len(src.get_annual_occurrence_rates())
15

3.6. Working with GMPEs directly: the ContextMaker 15

OpenQuake for Advanced Users Documentation, Release 3.18.0

and the area source contains 47 point sources

>>> len(list(src))
47

so in total there are 15 x 47 = 705 ruptures:

>>> len(ctx)
705

The ContextMaker takes care of the maximum_distance filtering, so in general the number of
contexts is lower than the total number of ruptures, since some ruptures are normally discarded,
being distant from the sites.

The contexts contain all the rupture, site and distance parameters.

Then you have

>>> ctx.mag[0]
4.7
>>> round(ctx.rrup[0], 1)
106.4
>>> round(ctx.rjb[0], 1)
105.9

In this example, the GMPE ToroEtAl2002SHARE does not require site parameters, so calling ctx.
vs30 will raise an AttributeError but in general the contexts contain also arrays of site param-
eters. There is also an array of indices telling which are the sites affected by the rupture associated
to the context:

>>> import numpy
>>> numpy.unique(ctx.sids)
array([0], dtype=uint32)

Once you have the contexts, the ContextMaker is able to compute means and standard deviations
from the underlying GMPEs as follows (for engine version >= 3.13):

>>> mean, sig, tau, phi = cmaker.get_mean_stds([ctx])

Since in this example there is a single gsim and a single IMT you will get:

>>> mean.shape
(1, 1, 705)
>>> sig.shape
(1, 1, 705)

The shape of the arrays in general is (G, M, N) where G is the number of GSIMs, M the number of

16 Chapter 3. Developing with the engine

OpenQuake for Advanced Users Documentation, Release 3.18.0

intensity measure types and N the total size of the contexts. Since this is an example with a single
site, each context has size 1, therefore N = 705 * 1 = 705. In general if there are multiple sites a
context M is the total number of affected sites. For instance if there are two contexts and the first
affect 1 sites and the second 2 sites then N would be 1 + 2 = 3. This example correspond to 1 + 1
+ . . . + 1 = 705.

From the mean and standard deviation is possible to compute the probabilities of excee-
dence. The ContextMaker provides a method to compute directly the probability map,
which internally calls `cmaker.get_pmap([ctx]) which gives exactly the result provided by
calc_hazard_curve(sitecol, src, gsims, oq) in the section before.

If you want to know exactly how get_pmap works you are invited to look at the source code in
openquake.hazardlib.contexts.

3.7 Working with verification tables

Hazard scientists implementing a new GMPE must provide verification tables, i.e. CSV files con-
taining inputs and expected outputs.

For instance, for the Atkinson2015 GMPE (chosen simply because is the first GMPE in lexico-
graphic order in hazardlib) the verification table has a structure like this:

rup_mag,dist_rhypo,result_type,pgv,pga,0.03,0.05,0.1,0.2,0.3,0.5
2.0,1.0,MEAN,5.50277734e-02,3.47335058e-03,4.59601700e-03,7.71361460e-03,
→˓9.34624779e-03,4.33207607e-03,1.75322233e-03,3.44695521e-04
2.0,5.0,MEAN,6.43850933e-03,3.61047741e-04,4.57949482e-04,7.24558049e-04,
→˓9.44495571e-04,5.11252304e-04,2.21076069e-04,4.73435138e-05
...

The columns starting with rup_ contain rupture parameters (the magnitude in this example) while
the columns starting with dist_ contain distance parameters. The column result_type is a
string in the set {“MEAN”, “INTER_EVENT_STDDEV”, “INTRA_EVENT_STDDEV”, “TO-
TAL_STDDEV”}. The remaining columns are the expected results for each intensity measure
type; in the the example the IMTs are PGV, PGA, SA(0.03), SA(0.05), SA(0.1), SA(0.2), SA(0.3),
SA(0.5).

Starting from engine version 3.13, it is possible to instantiate a ContextMaker and the associated
contexts from a GMPE and its verification tables with a few simple steps. First of all one must
instantiate the GMPE:

>>> from openquake.hazardlib import valid
>>> gsim = valid.gsim("Atkinson2015")

Second, one can determine the path names to the verification tables as follows (they are in a subdi-
rectory of hazardlib/tests/gsim/data):

3.7. Working with verification tables 17

OpenQuake for Advanced Users Documentation, Release 3.18.0

>>> import os
>>> from openquake.hazardlib.tests.gsim import data
>>> datadir = os.path.join(data.__path__[0], 'ATKINSON2015')
>>> fnames = [os.path.join(datadir, f) for f in ["ATKINSON2015_MEAN.csv",
... "ATKINSON2015_STD_INTER.csv", "ATKINSON2015_STD_INTRA.csv",
... "ATKINSON2015_STD_TOTAL.csv"]]

Then it is possible to instantiate the ContextMaker associated to the GMPE and a pandas DataFrame
associated to the verification tables in a single step:

>>> from openquake.hazardlib.tests.gsim.utils import read_cmaker_df, gen_
→˓ctxs
>>> cmaker, df = read_cmaker_df(gsim, fnames)
>>> list(df.columns)
['rup_mag', 'dist_rhypo', 'result_type', 'damping', 'PGV', 'PGA', 'SA(0.
→˓03)', 'SA(0.05)', 'SA(0.1)', 'SA(0.2)', 'SA(0.3)', 'SA(0.5)', 'SA(1.0)',
→˓ 'SA(2.0)', 'SA(3.0)', 'SA(5.0)']

Then you can immediately compute mean and standard deviations and compare with the values in
the verification table:

>>> mean, sig, tau, phi = cmaker.get_mean_stds(gen_ctxs(df))

sig refers to the “TOTAL_STDDEV”, tau to the “INTER_EVENT_STDDEV” and phi to the
“INTRA_EVENT_STDDEV”. This is how the tests in hazardlib are implemented. Interested
users should look at the code in https://github.com/gem/oq-engine/blob/engine-3.18/openquake/
hazardlib/tests/gsim/utils.py.

3.8 Running the engine tests

If you are a hazard scientist contributing a bug fix to a GMPE (or any other kind of bug fix) you
may need to run the engine tests and possibly change the expected files if there is a change in the
numbers. The way to do it is to start the dbserver and then run the tests from the repository root:

$ oq dbserver start
$ pytest -vx openquake/calculators

If you get an error like the following:

openquake/calculators/tests/__init__.py:218: in assertEqualFiles
raise DifferentFiles('%s %s' % (expected, actual))

E openquake.calculators.tests.DifferentFiles: /home/michele/oq-engine/
(continues on next page)

18 Chapter 3. Developing with the engine

https://github.com/gem/oq-engine/blob/engine-3.18/openquake/hazardlib/tests/gsim/utils.py
https://github.com/gem/oq-engine/blob/engine-3.18/openquake/hazardlib/tests/gsim/utils.py

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
→˓openquake/qa_tests_data/classical/case_1/expected/hazard_curve-PGA.csv /
→˓tmp/tmpkdvdhlq5/hazard_curve-mean-PGA_27249.csv

you need to change the expected file, i.e. copy the file /tmp/tmpkdvdhlq5/
hazard_curve-mean-PGA_27249.csv over classical/case_1/expected/
hazard_curve-PGA.csv.

3.8. Running the engine tests 19

OpenQuake for Advanced Users Documentation, Release 3.18.0

20 Chapter 3. Developing with the engine

CHAPTER

FOUR

ARCHITECTURE OF THE OPENQUAKE ENGINE

The engine is structured as a regular scientific application: we try to perform calculations as much
as possible in memory and when it is not possible intermediate results are stored in HDF5 format.
We try to work as much as possible in terms of arrays which are efficiently manipulated at C/Fortran
speed with a stack of well established scientific libraries (numpy/scipy).

CPU-intensity calculations are parallelized with a custom framework (the engine is ten years old
and predates frameworks like dask or ray) which however is quite easy to use and mostly compatible
with Python multiprocessing or concurrent.futures. The concurrency architecture is the standard
Single Writer Multiple Reader (SWMR), used at the HDF5 level: only one process can write data
while multiple processes can read it. The engine runs seamlessly on a single machine or a cluster,
using as many cores as possible.

In the past the engine had a database-centric architecture and was more class-oriented than numpy-
oriented: some remnants of such dark past are still there, but they are slowly disappearing. Currently
the database is only used for storing accessory data and it is a simple SQLite file. It is mainly used
by the WebUI to display the logs.

4.1 Components of the OpenQuake Engine

The OpenQuake Engine suite is composed of several components:

• a set of support libraries addressing different concerns like reading the inputs and writing
the outputs, implementing basic geometric manipulations, managing distributed computing
and generic programming utilities

• the hazardlib and risklib scientific libraries, providing the building blocks for hazard and risk
calculations, notably the GMPEs for hazard and the vulnerability/fragility functions for risk

• the hazard and risk calculators, implementing the core logic of the engine

• the datastore, which is an HDF5 file working as a short term storage/cache for a calculation;
it is possible to run a calculation starting from an existing datastore, to avoid recomputing
everything every time; there is a separate datastore for each calculation

21

https://dask.org/
https://ray.readthedocs.io/en/latest/

OpenQuake for Advanced Users Documentation, Release 3.18.0

• the database, which is a SQLite file working as a long term storage for the calculation meta-
data; the database contains the start/stop times of the computations, the owner of a calcu-
lation, the calculation descriptions, the performances, the logs, etc; the bulk scientific data
(essentially big arrays) are kept in the datastore

• the DbServer, which is a service mediating the interaction between the calculators and the
database

• the WebUI is a web application that allows to run and monitor computations via a browser;
multiple calculations can be run in parallel

• the oq command-line tool; it allows to run computations and provides an interface to the
underlying database and datastores so that it is possible to list and export the results

• the engine can run on a cluster of machines: in that case a minimal amount of configuration
is needed, whereas in single machine installations the engine works out of the box

• since v3.8 the engine does not depend anymore from celery and rabbitmq, but can still use
such tools until they will be deprecated

This is the full stack of internal libraries used by the engine. Each of these is a Python package
containing several modules or event subpackages. The stack is a dependency tower where the higher
levels depend on the lower levels but not vice versa:

• level 9: commands (subcommands of oq)

• level 8: server (database and Web UI)

• level 7: engine (command-line tool, export, logs)

• level 6: calculators (hazard and risk calculators)

• level 5: commonlib (configuration, logic trees, I/O)

• level 4: risklib (risk validation, risk models, risk inputs)

• level 3: hmtk (catalogues, plotting, . . .)

• level 2: hazardlib (validation, read/write XML, source and site objects, geospatial utilities,
GSIM library)

• level 1: baselib (programming utilities, parallelization, monitoring, hdf5. . .)

baselib and hazardlib are very stable and can be used outside of the engine; the other libraries are
directly related to the engine and are likely to be affected by backward-incompatible changes in the
future, as the code base evolves.

The GMPE library in hazardlib and the calculators are designed to be extensible, so that it is easy
to add a new GMPE class or a new calculator. We routinely add several new GMPEs per release;
adding new calculators is less common and it requires more expertise, but it is possible and it
has been done several times in the past. In particular it is often easier to add a specific calculator
optimized for a given use case rather than complicating the current calculators.

22 Chapter 4. Architecture of the OpenQuake engine

OpenQuake for Advanced Users Documentation, Release 3.18.0

The results of a computation are automatically saved in the datastore and can be exported in a
portable format, such as CSV (or XML, for legacy reasons). You can assume that the datastore
of version X of the engine will not work with version X + 1. On the contrary, the exported files
will likely be same across different versions. It is important to export all of the outputs you are
interested in before doing an upgrade, otherwise you would be forced to downgrade in order to be
able to export the previous results.

The WebUI provides a REST API that can be used in third party applications: for instance a QGIS
plugin could download the maps generated by the engine via the WebUI and display them. There is
lot of functionality in the API which is documented here: https://github.com/gem/oq-engine/blob/
engine-3.18/doc/web-api.md. It is possible to build your own user interface for the engine on top
of it, since the API is stable and kept backward compatible.

4.2 Design principles

The main design principle has been simplicity: everything has to be as simple as possible (but not
simplest). The goal has been to keep the engine simple enough that a single person can understand
it, debug it, and extend it without tremendous effort. All the rest comes from simplicity: trans-
parency, ability to inspect and debug, modularity, adaptability of the code, etc. Even efficiency:
in the last three years most of the performance improvements came from free, just from removing
complications. When a thing is simple it is easy to make it fast. The battle for simplicity is never
ending, so there are still several things in the engine that are more complex than they should: we
are working on that.

After simplicity the second design goal has been performance: the engine is a number crunching
application after all, and we need to run massively parallel calculations taking days or weeks of
runtime. Efficiency in terms of computation time and memory requirements is of paramount im-
portance, since it makes the difference between being able to run a computation and being unable
to do it. Being too slow to be usable should be considered as a bug.

The third requirement is reproducibility, which is the same as testability: it is essential to have
a suite of tests checking that the calculators are providing the expected outputs against a set of
predefined inputs. Currently we have thousands of tests which are run multiple times per day in
our Continuous Integration environments (GitHub Actions, GitLab Pipelines), split into unit tests,
end-to-end tests and long running tests.

4.2. Design principles 23

https://github.com/gem/oq-engine/blob/engine-3.18/doc/web-api.md
https://github.com/gem/oq-engine/blob/engine-3.18/doc/web-api.md

OpenQuake for Advanced Users Documentation, Release 3.18.0

24 Chapter 4. Architecture of the OpenQuake engine

CHAPTER

FIVE

HOW THE PARALLELIZATION WORKS IN THE ENGINE

The engine builds on top of existing parallelization libraries. Specifically, on a single machine it is
based on multiprocessing, which is part of the Python standard library, while on a cluster it is based
on zeromq, which is a well-known and maintained library.

While the parallelization used by the engine may look trivial in theory (it only addresses embar-
rassingly parallel problems, not true concurrency) in practice it is far from being so. For instance
a crucial feature that the GEM staff requires is the ability to kill (revoke) a running calculation
without affecting other calculations that may be running concurrently.

Because of this requirement, we abandoned concurrent.futures, which is also in the standard library,
but is lacking the ability to kill the pool of processes, which is instead available in multiprocessing
with the Pool.shutdown method. For the same reason, we discarded dask.

Using a real cluster scheduling mechanism (like SLURM) would be of course better, but we do
not want to impose on our users a specific cluster architecture. Zeromq has the advantage of being
simple to install and manage. Still, the architecture of the engine parallelization library is such
that it is very simple to replace zeromq with other parallelization mechanisms: people interested in
doing so should just contact us.

Another tricky aspect of parallelizing large scientific calculations is that the amount of data returned
can exceed the 4 GB limit of Python pickles: in this case one gets ugly runtime errors. The solution
we found is to make it possible to yield partial results from a task: in this way instead of returning
say 40 GB from one task, one can yield 40 times partial results of 1 GB each, thus bypassing the 4
GB limit. It is up to the implementor to code the task carefully. In order to do so, it is essential to
have in place some monitoring mechanism measuring how much data is returned back from a task,
as well as other essential information like how much memory is allocated and how long it takes to
run a task.

To this aim the OpenQuake engine offers a Monitor class (located in openquake.baselib.
performance) which is perfectly well integrated with the parallelization framework, so much that
every task gets a Monitor object, a context manager that can be used to measure time and memory
of specific parts of a task. Moreover, the monitor automatically measures time and memory for the
whole task, as well as the size of the returned output (or outputs). Such information is stored in an
HDF5 file that you must pass to the monitor when instantiating it. The engine automatically does
that for you by passing the pathname of the datastore.

25

OpenQuake for Advanced Users Documentation, Release 3.18.0

In OpenQuake a task is just a Python function (or generator) with positional arguments, where the
last argument is a Monitor instance. For instance the rupture generator task in an event based
calculation is coded more or less like this:

def sample_ruptures(sources, num_samples, monitor): # simplified code
ebruptures = []
for src in sources:

for ebr in src.sample_ruptures(num_samples):
eb_ruptures.append(ebr)

if len(eb_ruptures) > MAX_RUPTURES:
yield partial result to avoid running out of memory
yield eb_ruptures
eb_ruptures.clear()

if ebruptures:
yield eb_ruptures

If you know that there is no risk of running out of memory and/or passing the pickle limit you can
just use a regular function and return a single result instead of yielding partial results. This is the
case when computing the hazard curves, because the algorithm is considering one rupture at the
time and it is not accumulating ruptures in memory, differently from what happens when sampling
the ruptures in event based.

From the point of view of the coder, in the engine there is no difference between a task running
on a cluster using zeromq and a task running locally using multiprocessing.Pool: they are
coded the same, but depending on a configuration parameter in openquake.cfg (distribute=zmq
or distribute=processpool) the engine will treat them differently. You can also set an environ-
ment variable OQ_DISTRIBUTE, which takes the precedence over openquake.cfg, to specify which
kind of distribution you want to use (zmq or processpool): this is mostly used when debugging,
when you typically insert a breakpoint in the task and then run the calculation with

$ OQ_DISTRIBUTE=no oq run job.ini

no is a perfectly valid distribution mechanism in which there is actually no distribution and all the
tasks run sequentially in the same core. Having this functionality is invaluable for debugging.

Another tricky bit of real life parallelism in Python is that forking does not play well with the HDF5
library: so in the engine we are using multiprocessing in the spawn mode, not in fork mode:
fortunately this feature has become available to us in Python 3 and it made our life a lot happier.
Before it was extremely easy to incur unspecified behavior, meaning that reading an HDF5 file from
a forked process could

1. work perfectly well

2. read bogus numbers

3. cause a segmentation fault

and all of the three things could happen unpredictably at any moment, depending on the machine

26 Chapter 5. How the parallelization works in the engine

OpenQuake for Advanced Users Documentation, Release 3.18.0

where the calculation was running, the load on the machine, and any kind of environmental cir-
cumstances.

Also, while with the newest HDF5 libraries it is possible to use a Single Writer Multiple Reader
architecture (SWMR), and we are actually using it - even if it is sometimes tricky to use it correctly
- the performance is not always good. So, when it matters, we are using a two files approach which
is simple and very effective: we read from one file (with multiple readers) and we write on the other
file (with a single writer). This approach bypasses all the limitations of the SWMR mode in HDF5
and did not require a large refactoring of our existing code.

Another tricky point in cluster situations is that we need to transfer gigabytes of data, i.e. the
large arrays coming from scientific calculations, rather than lots of small messages. Hence, we are
returning data from the tasks via zeromq instead of using celery/rabbitmq as we did in the remote
past. This is hidden from the user, but internally the engine keeps track of all tasks that were
submitted and waits until they send the message that they finished. If one task runs out of memory
badly and never sends the message that it finished, the engine may hang, waiting for the results of a
task that does not exist anymore. You have to be careful. What we did in our cluster is to set some
memory limit on the openquake user with the cgroups technology, so that an out of memory task
normally fails in a clean way with a Python MemoryError, sends the message that it finished and
nothing particularly bad happens. Still, in situations of very heavy load the OOM killer may enter
in action aggressively and the main calculation may hang: in such cases you need a good sysadmin
having put in place some monitor mechanism, so that you can see if the OOM killer entered in
action and then you can kill the main process of the calculation by hand. There is not much more
that can be done for really huge calculations that stress the hardware as much as possible. You must
be prepared for failures.

5.1 How to use openquake.baselib.parallel

Suppose you want to code a character-counting algorithm, which is a textbook exercise in parallel
computing and suppose that you want to store information about the performance of the algorithm.
Then you should use the OpenQuake Monitor class, as well as the utility openquake.baselib.
commonlib.hdf5new that builds an empty datastore for you. Having done that, the openquake.
baselib.parallel.Starmap class can take care of the parallelization for you as in the following
example:

import os
import sys
import pathlib
import collections
from openquake.baselib.performance import Monitor
from openquake.baselib.parallel import Starmap
from openquake.commonlib.datastore import hdf5new

(continues on next page)

5.1. How to use openquake.baselib.parallel 27

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)

def count(text):
c = collections.Counter()
for word in text.split():

c += collections.Counter(word)
return c

def main(dirname):
dname = pathlib.Path(dirname)
with hdf5new() as hdf5: # create a new datastore

monitor = Monitor('count', hdf5) # create a new monitor
iterargs = ((open(dname/fname, encoding='utf-8').read(),)

for fname in os.listdir(dname)
if fname.endswith('.rst')) # read the docs

c = collections.Counter() # intially empty counter
for counter in Starmap(count, iterargs, monitor):

c += counter
print(c) # total counts
print('Performance info stored in', hdf5)

if __name__ == '__main__':
main(sys.argv[1]) # pass the directory where the .rst files are

The name Starmap was chosen because it looks very similar to how multiprocessing.Pool.
starmap works, the only apparent difference being in the additional monitor argument:

pool.starmap(func, iterargs) -> Starmap(func, iterargs, monitor)

In reality the Starmap has a few other differences:

1. it does not use the multiprocessing mechanism to return back the results; it uses zmq instead

2. thanks to that, it can be extended to generator functions and can yield partial results, thus
overcoming the limitations of multiprocessing

3. the Starmap has a .submitmethod and it is actually more similar to concurrent.futures
than to multiprocessing.

Here is how you would write the same example by using .submit:

def main(dirname):
dname = pathlib.Path(dirname)
with hdf5new() as hdf5:

(continues on next page)

28 Chapter 5. How the parallelization works in the engine

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
smap = Starmap(count, monitor=Monitor('count', hdf5))
for fname in os.listdir(dname):

if fname.endswith('.rst'):
smap.submit(open(dname/fname, encoding='utf-8').read())

c = collections.Counter()
for counter in smap:

c += counter

The difference with concurrent.futures is that the Starmap takes care for of all submitted
tasks, so you do not need to use something like concurrent.futures.completed, you can just
loop on the Starmap object to get the results from the various tasks.

The .submit approach is more general: for instance you could define more than one Starmap ob-
ject at the same time and submit some tasks with a starmap and some others with another starmap:
this may help parallelizing complex situations where it is expensive to use a single starmap. How-
ever, there is limit on the number of starmaps that can be alive at the same moment.

Moreover the Starmap has a .shutdown method that allows to shutdown the underlying pool.

The idea is to submit the text of each file - here I am considering .rst files, like the ones com-
posing this manual - and then loop over the results of the Starmap. This is very similar to how
concurrent.futures works.

5.1. How to use openquake.baselib.parallel 29

OpenQuake for Advanced Users Documentation, Release 3.18.0

30 Chapter 5. How the parallelization works in the engine

CHAPTER

SIX

EXTRACTING DATA FROM CALCULATIONS

The engine has a relatively large set of predefined outputs, that you can get in various formats, like
CSV, XML or HDF5. They are all documented in the manual and they are the recommended way
of interacting with the engine, if you are not tech-savvy.

However, sometimes you must be tech-savvy: for instance if you want to post-process hundreds of
GB of ground motion fields produced by an event based calculation, you should not use the CSV
output, at least if you care about efficiency. To manage this case (huge amounts of data) there is a
specific solution, which is also able to manage the case of data lacking a predefined exporter: the
Extractor API.

There are actually two different kind of extractors: the simple Extractor, which is meant to man-
age large data sets (say > 100 MB) and the WebExtractor, which is able to interact with the We-
bAPI and to extract data from a remote machine. The WebExtractor is nice, but cannot be used for
large amount of data for various reasons; in particular, unless your Internet connection is ultra-fast,
downloading GBs of data will probably send the web request in timeout, causing it to fail. Even if
there is no timeout, the WebAPI will block, everything will be slow, the memory occupation and
disk space will go up, and at certain moment something will fail.

The WebExtractor is meant for small to medium outputs, things like the mean hazard maps -
an hazard map containing 100,000 points and 3 PoEs requires only 1.1 MB of data at 4 bytes per
point. Mean hazard curves or mean average losses in risk calculation are still small enough for
the WebExtractor. But if you want to extract all of the realizations you must go with the simple
Extractor: in that case your postprocessing script must run in the remote machine, since it requires
direct access to the datastore.

Here is an example of usage of the Extractor to retrieve mean hazard curves:

>> from openquake.calculators.extract import Extractor
>> calc_id = 42 # for example
>> extractor = Extractor(calc_id)
>> obj = extractor.get('hcurves?kind=mean&imt=PGA') # returns an␣
→˓ArrayWrapper
>> obj.mean.shape # an example with 10,000 sites, 20 levels per PGA

(continues on next page)

31

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
(10000, 1, 20)
>> extractor.close()

If in the calculation you specified the flag individual_rlzs=true, then it is also possible to
retrieve a specific realization

>> dic = vars(extractor.get(‘hcurves?kind=rlz-0’)) >> dic[‘rlz-000’] # array of shape
(num_sites, num_imts, num_levels)

or even all realizations:

>> dic = vars(extractor.get(‘hcurves?kind=rlzs’))

Here is an example of using the WebExtractor to retrieve hazard maps. Here we assume that in a
remote machine there is a WebAPI server running, a.k.a. the Engine Server. The first thing to is to
set up the credentials to access the WebAPI. There are two cases:

1. you have a production installation of the engine in /opt

2. you have a development installation of the engine in a virtualenv

In both case you need to create a file called openquake.cfg with the following format:

[webapi]
server = http(s)://the-url-of-the-server(:port)
username = my-username
password = my-password

username and password can be left empty if the authentication is not enabled in the server, which
is the recommended way, if the server is in your own secure LAN. Otherwise you must set the right
credentials. The difference between case 1 and case 2 is in where to put the openquake.cfg file:
if you have a production installation, put it in your $HOME, if you have a development installation,
put it in your virtualenv directory.

The usage then is the same as the regular extractor:

>> from openquake.calculators.extract import WebExtractor
>> extractor = WebExtractor(calc_id)
>> obj = extractor.get('hmaps?kind=mean&imt=PGA') # returns an␣
→˓ArrayWrapper
>> obj.mean.shape # an example with 10,000 sites and 4 PoEs
(10000, 1, 4)
>> extractor.close()

If you do not want to put your credentials in the openquake.cfg file, you can do so, but then you
need to pass them explicitly to the WebExtractor:

32 Chapter 6. Extracting data from calculations

OpenQuake for Advanced Users Documentation, Release 3.18.0

>> extractor = WebExtractor(calc_id, server, username, password)

6.1 Plotting

The (Web)Extractor is used in the oq plot command: by configuring openquake.cfg it is possible
to plot things like hazard curves, hazard maps and uniform hazard spectra for remote (or local)
calculations. Here are three examples of use:

$ oq plot 'hcurves?kind=mean&imt=PGA&site_id=0' <calc_id>
$ oq plot 'hmaps?kind=mean&imt=PGA' <calc_id>
$ oq plot 'uhs?kind=mean&site_id=0' <calc_id>

The site_id is optional; if missing, only the first site (site_id=0) will be plotted. If you want to
plot all the realizations you can do:

$ oq plot 'hcurves?kind=rlzs&imt=PGA' <calc_id>

If you want to plot all statistics you can do:

$ oq plot 'hcurves?kind=stats&imt=PGA' <calc_id>

It is also possible to combine plots. For instance if you want to plot all realizations and also the
mean the command to give is:

$ oq plot 'hcurves?kind=rlzs&kind=mean&imt=PGA' <calc_id>

If you want to plot the median and the mean the command is:

$ oq plot 'hcurves?kind=quantile-0.5&kind=mean&imt=PGA' <calc_id>

assuming the median (i.e. quantile-0.5) is available in the calculation. If you want to compare say
rlz-0 with rlz-2 and rlz-5 you can just just say so:

$ oq plot 'hcurves?kind=rlz-0&kind=rlz-2&kind=rlz-5&imt=PGA' <calc_id>

You can combine as many kinds of curves as you want. Clearly if your are specifying a kind that is
not available you will get an error.

6.1. Plotting 33

OpenQuake for Advanced Users Documentation, Release 3.18.0

6.2 Extracting disaggregation outputs

Disaggregation outputs are particularly complex and they are stored in the datastore in different
ways depending on the engine version. Here we will give a few examples for the Disaggregation
Demo, which has the flag individual_rlzs set. If you run the demos with a recent enough
version of the engine (>=3.17) you will see two disaggregation outputs:

1. Disaggregation Outputs Per Realization

2. Statistical Disaggregation Outputs

Such outputs can be exported as usual in CSV format and will generate several files. Users can
be interested in extracting a subset of the outputs programmatically, thus avoiding the overhead of
exporting more data than needed and having to read the CSV. The way to go is to define an extractor:

>> extractor = Extractor(calc_id)

and five parameters:

1. kind: the kind of outputs, like Mag, Mag_Dist, Mag_Dist_Eps, etc

2. imt: the IMT, like PGA, SA(1.0), etc

3. site_id: the site ordinal number, like 0, 1, etc

4. poe_id: the ordinal of the PoE, like 0, 1, etc

5. spec: the specifier string, one of “rlzs”, “stats”, “rlzs-traditional”, “stats-traditional”

Here is an example:

>> ex = 'disagg?kind=Mag_Dist&imt=PGA&site_id=0&poe_id=0&spec=rlzs-
→˓traditional'
>> dic = extractor.get(ex)

The dictionary here contains the following keys:

>> dic["mag"] # lenght 4
array([5., 6., 7., 8.])
>> dic["dist"] # lenght 21
array([0., 10., 20., 30., 40., 50., 60., 70., 80., 90., 100.,

110., 120., 130., 140., 150., 160., 170., 180., 190., 200.])
>> dic["array"].shape
(4, 21, 1, 1)

34 Chapter 6. Extracting data from calculations

OpenQuake for Advanced Users Documentation, Release 3.18.0

6.3 Extracting ruptures

Here is an example for the event based demo:

$ cd oq-engine/demos/hazard/EventBasedPSHA/
$ oq engine --run job.ini
$ oq shell
IPython shell with a global object "o"
In [1]: from openquake.calculators.extract import Extractor
In [2]: extractor = Extractor(calc_id=-1)
In [3]: aw = extractor.get('rupture_info?min_mag=5')
In [4]: aw
Out[4]: <ArrayWrapper(1511,)>
In [5]: aw.array
Out[5]:
array([(0, 1, 5.05, 0.08456118, 0.15503392, 5., b'Active Shallow Crust
→˓', 0.0000000e+00, 90. , 0.),

(1, 1, 5.05, 0.08456119, 0.15503392, 5., b'Active Shallow Crust
→˓', 4.4999969e+01, 90. , 0.),

(2, 1, 5.05, 0.08456118, 0.15503392, 5., b'Active Shallow Crust
→˓', 3.5999997e+02, 49.999985, 0.),

...,
(1508, 2, 6.15, 0.26448786, -0.7442877 , 5., b'Active Shallow Crust

→˓', 0.0000000e+00, 90. , 0.),
(1509, 1, 6.15, 0.26448786, -0.74428767, 5., b'Active Shallow Crust

→˓', 2.2499924e+02, 50.000004, 0.),
(1510, 1, 6.85, 0.26448786, -0.74428767, 5., b'Active Shallow Crust

→˓', 4.9094699e-04, 50.000046, 0.)],
dtype=[('rup_id', '<i8'), ('multiplicity', '<u2'), ('mag', '<f4'), (

→˓'centroid_lon', '<f4'),
('centroid_lat', '<f4'), ('centroid_depth', '<f4'), ('trt',

→˓'S50'), ('strike', '<f4'),
('dip', '<f4'), ('rake', '<f4')])

In [6]: extractor.close()

6.3. Extracting ruptures 35

OpenQuake for Advanced Users Documentation, Release 3.18.0

36 Chapter 6. Extracting data from calculations

CHAPTER

SEVEN

READING OUTPUTS WITH PANDAS

If you are a scientist familiar with Pandas, you will be happy to know that it is possible to process
the engine outputs with it. Here we will give an example involving hazard curves.

Suppose you ran the AreaSourceClassicalPSHA demo, with calculation ID=42; then you can pro-
cess the hazard curves as follows:

>> from openquake.commonlib.datastore import read
>> dstore = read(42)
>> df = dstore.read_df('hcurves-stats', index='lvl',
.. sel=dict(imt='PGA', stat='mean', site_id=0))

site_id stat imt value
lvl
0 0 b'mean' b'PGA' 0.999982
1 0 b'mean' b'PGA' 0.999949
2 0 b'mean' b'PGA' 0.999850
3 0 b'mean' b'PGA' 0.999545
4 0 b'mean' b'PGA' 0.998634
..
44 0 b'mean' b'PGA' 0.000000

The dictionary dict(imt='PGA', stat='mean', site_id=0) is used to select subsets of the
entire dataset: in this case hazard curves for mean PGA for the first site.

If you do not like pandas, or for some reason you prefer plain numpy arrays, you can get a slice of
hazard curves by using the .sel method:

>> arr = dstore.sel('hcurves-stats', imt='PGA', stat='mean', site_id=0)
>> arr.shape # (num_sites, num_stats, num_imts, num_levels)
(1, 1, 1, 45)

Notice that the .sel method does not reduce the number of dimensions of the original array (4 in this
case), it just reduces the number of elements. It was inspired by a similar functionality in xarray.

37

OpenQuake for Advanced Users Documentation, Release 3.18.0

7.1 Example: how many events per magnitude?

When analyzing an event based calculation, users are often interested in checking the magnitude-
frequency distribution, i.e. to count how many events of a given magnitude are present in the
stochastic event set for a fixed investigation time and a fixed ses_per_logic_tree_path. You
can do that with code like the following:

def print_events_by_mag(calc_id):
open the DataStore for the current calculation
dstore = datastore.read(calc_id)
read the events table as a Pandas dataset indexed by the event ID
events = dstore.read_df('events', 'id')
find the magnitude of each event by looking at the 'ruptures' table
events['mag'] = dstore['ruptures']['mag'][events['rup_id']]
group the events by magnitude
for mag, grp in events.groupby(['mag']):

print(mag, len(grp)) # number of events per group

If you want to know the number of events per realization and per stochastic event set you can
just refine the groupby clause, using the list ['mag', 'rlz_id', 'ses_id'] instead of simply
['mag'].

Given an event, it is trivial to extract the ground motion field generated by that event, if it has been
stored (warning: events producing zero ground motion are not stored). It is enough to read the
gmf_data table indexed by event ID, i.e. the eid field:

>> eid = 20 # consider event with ID 20
>> gmf_data = dstore.read_df('gmf_data', index='eid') # engine>3.11
>> gmf_data.loc[eid]

sid gmv_0
eid
20 93 0.113241
20 102 0.114756
20 121 0.242828
20 142 0.111506

The gmv_0 refers to the first IMT; here I have shown an example with a single IMT, in presence of
multiple IMTs you would see multiple columns gmv_0, gmv_1, gmv_2, The sid column
refers to the site ID.

As a following step, you can compute the hazard curves at each site from the ground motion values
by using the function gmvs_to_poes, available since engine 3.10:

>> from openquake.commonlib.calc import gmvs_to_poes
>> gmf_data = dstore.read_df('gmf_data', index='sid')

(continues on next page)

38 Chapter 7. Reading outputs with pandas

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
>> df = gmf_data.loc[0] # first site
>> gmvs = [df[col].to_numpy() for col in df.columns
.. if col.startswith('gmv_')] # list of M arrays
>> oq = dstore['oqparam'] # calculation parameters
>> poes = gmvs_to_poes(gmvs, oq.imtls, oq.ses_per_logic_tree_path)

This will return an array of shape (M, L) where M is the number of intensity measure types and L
the number of levels per IMT. This works when there is a single realization; in presence of multiple
realizations one has to collect together set of values corresponding to the same realization (this can
be done by using the relation event_id -> rlz_id) and apply gmvs_to_poes to each set.

NB: another quantity one may want to compute is the average ground motion field, normally for
plotting purposes. In that case special care must be taken in the presence of zero events, i.e. events
producing a zero ground motion value (or below the minimum_intensity): since such values are
not stored you have to enlarge the gmvs arrays with the missing zeros, the number of which can be
determined from the events table for each realization. The engine is able to compute the avg_gmf
correctly, however, since it is an expensive operation, it is done only for small calculations.

7.1. Example: how many events per magnitude? 39

OpenQuake for Advanced Users Documentation, Release 3.18.0

40 Chapter 7. Reading outputs with pandas

CHAPTER

EIGHT

LIMITATIONS OF FLOATING-POINT ARITHMETIC

Most practitioners of numeric calculations are aware that addition of floating-point numbers is non-
associative; for instance

>>> (.1 + .2) + .3
0.6000000000000001

is not identical to

>>> .1 + (.2 + .3)
0.6

Other floating-point operations, such as multiplication, are also non-associative. The order in which
operations are performed plays a role in the results of a calculation.

Single-precision floating-point variables are able to represent integers between [-16777216,
16777216] exactly, but start losing precision beyond that range; for instance:

>>> numpy.float32(16777216)
16777216.0

>>> numpy.float32(16777217)
16777216.0

This loss of precision is even more apparent for larger values:

>>> numpy.float32(123456786432)
123456780000.0

>>> numpy.float32(123456786433)
123456790000.0

These properties of floating-point numbers have critical implications for numerical reproducibility
of scientific computations, particularly in a parallel or distributed computing environment.

41

OpenQuake for Advanced Users Documentation, Release 3.18.0

For the purposes of this discussion, let us define numerical reproducibility as obtaining bit-wise
identical results for different runs of the same computation on either the same machine or different
machines.

Given that the OpenQuake engine works by parallelizing calculations, numerical reproducibility
cannot be fully guaranteed, even for different runs on the same machine (unless the computation is
run using the –no-distribute or –nd flag).

Consider the following strategies for distributing the calculation of the asset losses for a set of
events, followed by aggregation of the results for the portfolio due to all of the events. The assets
could be split into blocks with each task computing the losses for a particular block of assets and for
all events, and the partial losses coming in from each task is aggregated at the end. Alternatively,
the assets could be kept as a single block, splitting the set of events/ruptures into blocks instead;
once again the engine has to aggregate partial losses coming in from each of the tasks. The order
of the tasks is arbitrary, because it is impossible to know how long each task will take before the
computation actually begins.

For instance, suppose there are 3 tasks, the first one producing a partial loss of 0.1 billion, the second
one of 0.2 billion, and the third one of 0.3 billion. If we run the calculation and the order in which the
results are received is 1-2-3, we will compute a total loss of (.1 + .2) + .3 = 0.6000000000000001
billion. On the other hand, if for some reason the order in which the results arrive is 2-3-1, say
for instance, if the first core is particularly hot and the operating system decides to enable some
throttling on it, then the aggregation will be (.2 + .3) + .1 = 0.6 billion, which is different from
the previous value by 1.11E-7 units. This example assumes the use of Python’s IEEE-754 “double
precision” 64-bit floats.

However, the engine uses single-precision 32-bit floats rather than double-precision 64-bit floats
in a tradeoff necessary for reducing the memory demand (both RAM and disk space) for large
computations, so the precision of results is less than in the above example. 64-bit floats have 53 bits
of precision, and this why the relative error in the example above was around 1.11E-16 (i.e. 2^-53).
32-bit floats have only 24 bits of precision, so we should expect a relative error of around 6E-8 (i.e.
2^-24), which for the example above would be around 60 units. Loss of precision in representing
and storing large numbers is a factor that must be considered when running large computations.

By itself, such differences may be negligible for most computations. However, small differences
may accumulate when there are hundreds or even thousands of tasks handling different parts of the
overall computation and sending back results for aggregation.

Anticipating these issues, some adjustments can be made to the input models in order to circumvent
or at least minimize surprises arising from floating-point arithmetic. Representing asset values in
the exposure using thousands of dollars as the unit instead of dollars could be one such defensive
measure.

This is why, as an aid to the interested user, starting from version 3.9, the engine logs a warning if
it finds inconsistencies beyond a tolerance level in the aggregated loss results.

Recommended readings:

• Goldberg, D. (1991). What every computer scientist should know about floating-point arith-

42 Chapter 8. Limitations of Floating-point Arithmetic

OpenQuake for Advanced Users Documentation, Release 3.18.0

metic. ACM Computing Surveys (CSUR), 23(1), 5-48. Reprinted at https://docs.oracle.com/
cd/E19957-01/806-3568/ncg_goldberg.html

• https://docs.python.org/3/tutorial/floatingpoint.html

• https://en.wikipedia.org/wiki/Single-precision_floating-point_format

• https://en.wikipedia.org/wiki/Double-precision_floating-point_format

43

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.python.org/3/tutorial/floatingpoint.html
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

OpenQuake for Advanced Users Documentation, Release 3.18.0

44 Chapter 8. Limitations of Floating-point Arithmetic

CHAPTER

NINE

SOME USEFUL OQ COMMANDS

The oq command-line script is the entry point for several commands, the most important one being
oq engine, which is documented in the manual.

The commands documented here are not in the manual because they have not reached the same
level of maturity and stability. Still, some of them are quite stable and quite useful for the final
users, so feel free to use them.

You can see the full list of commands by running oq –help:

$ oq --help
usage: oq [-h] [-v]

{shell,upgrade_nrml,reduce_smlt,show_attrs,prepare_site_model,
→˓nrml_from,shakemap2gmfs,importcalc,run,show,purge,renumber_sm,workers,
→˓postzip,plot_assets,db,dbserver,tidy,extract,sample,to_hdf5,ltcsv,
→˓reaggregate,restore,mosaic,check_input,dump,info,zip,abort,nrml_to,
→˓engine,reset,checksum,export,webui,compare,plot,reduce_sm}

...

positional arguments:
{shell,upgrade_nrml,reduce_smlt,show_attrs,prepare_site_model,nrml_from,

→˓shakemap2gmfs,importcalc,run,show,purge,renumber_sm,workers,postzip,
→˓plot_assets,db,dbserver,tidy,extract,sample,to_hdf5,ltcsv,reaggregate,
→˓restore,mosaic,check_input,dump,info,zip,abort,nrml_to,engine,reset,
→˓checksum,export,webui,compare,plot,reduce_sm}

available subcommands; use oq <subcmd> --help

options:
-h, --help show this help message and exit
-v, --version show program's version number and exit

This is the output that you get at the present time (engine 3.17); depending on your version of
the engine you may get a different output. As you see, there are several commands, like purge,
show_attrs, export, restore, . . . You can get information about each command with oq <command>
–help; for instance, here is the help for purge:

45

OpenQuake for Advanced Users Documentation, Release 3.18.0

$ oq purge --help
usage: oq purge [-h] [-f] calc_id

Remove the given calculation. If you want to remove all calculations, use␣
→˓oq
reset.

positional arguments:
calc_id calculation ID

optional arguments:
-h, --help show this help message and exit
-f, --force ignore dependent calculations

Some of these commands are highly experimental and may disappear; others are meant for debug-
ging and are not meant to be used by end-users. Here I will document only the commands that are
useful for the general public and have reached some level of stability.

Probably the most important command is oq info. It has several features.

1. It can be invoked with a job.ini file to extract information about the logic tree of the calculation.

2. When invoked with the –report option, it produces a .rst report with important information about
the computation. It is ESSENTIAL in the case of large calculations, since it will give you an idea
of the feasibility of the computation without running it. Here is an example of usage:

$ oq info --report job.ini
Generated /tmp/report_1644.rst
<Monitor info, duration=10.910529613494873s, memory=60.16 MB>

You can open /tmp/report_1644.rst and read the information listed there (1644 is the calculation
ID, the number will be different each time).

3. It can be invoked without a job.ini file, and it that case it provides global information about the
engine and its libraries. Try, for instance:

$ oq info calculators # list available calculators
$ oq info gsims # list available GSIMs
$ oq info views # list available views
$ oq info exports # list available exports
$ oq info parameters # list all job.ini parameters

The second most important command is oq export. It allows customization of the exports from the
datastore with additional flexibility compared to the oq engine export commands. In the future the
oq engine exports commands might be deprecated and oq export might become the official export
command, but we are not there yet.

46 Chapter 9. Some useful oq commands

OpenQuake for Advanced Users Documentation, Release 3.18.0

Here is the usage message:

$ oq export --help
usage: oq export [-h] [-e csv] [-d .] datastore_key [calc_id]

Export an output from the datastore.

positional arguments:
datastore_key datastore key
calc_id number of the calculation [default: -1]

optional arguments:
-h, --help show this help message and exit
-e csv, --exports csv

export formats (comma separated)
-d ., --export-dir . export directory

The list of available exports (i.e. the datastore keys and the available export formats) can be extracted
with the oq info exports command; the number of exporters defined changes at each version:

$ oq info exports
? "aggregate_by" ['csv']
? "disagg_traditional" ['csv']
? "loss_curves" ['csv']
? "losses_by_asset" ['npz']
Aggregate Asset Losses "agglosses" ['csv']
Aggregate Loss Curves Statistics "agg_curves-stats" ['csv']
Aggregate Losses "aggrisk" ['csv']
Aggregate Risk Curves "aggcurves" ['csv']
Aggregated Risk By Event "risk_by_event" ['csv']
Asset Loss Curves "loss_curves-rlzs" ['csv']
Asset Loss Curves Statistics "loss_curves-stats" ['csv']
Asset Loss Maps "loss_maps-rlzs" ['csv', 'npz']
Asset Loss Maps Statistics "loss_maps-stats" ['csv', 'npz']
Asset Risk Distributions "damages-rlzs" ['npz', 'csv']
Asset Risk Statistics "damages-stats" ['csv']
Average Asset Losses "avg_losses-rlzs" ['csv']
Average Asset Losses Statistics "avg_losses-stats" ['csv']
Average Ground Motion Field "avg_gmf" ['csv']
Benefit Cost Ratios "bcr-rlzs" ['csv']
Benefit Cost Ratios Statistics "bcr-stats" ['csv']
Disaggregation Outputs "disagg" ['csv']
Earthquake Ruptures "ruptures" ['csv']
Events "events" ['csv']

(continues on next page)

47

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
Exposure + Risk "asset_risk" ['csv']
Full Report "fullreport" ['rst']
Ground Motion Fields "gmf_data" ['csv', 'hdf5']
Hazard Curves "hcurves" ['csv', 'xml', 'npz']
Hazard Maps "hmaps" ['csv', 'xml', 'npz']
Input Files "input" ['zip']
Mean Conditional Spectra "cs-stats" ['csv']
Realizations "realizations" ['csv']
Source Loss Table "src_loss_table" ['csv']
Total Risk "agg_risk" ['csv']
Uniform Hazard Spectra "uhs" ['csv', 'xml', 'npz']
There are 44 exporters defined.

At the present the supported export types are xml, csv, rst, npz and hdf5. xml has been deprecated
for some outputs and is not the recommended format for large exports. For large exports, the rec-
ommended formats are npz (which is a binary format for numpy arrays) and hdf5. If you want the
data for a specific realization (say the first one), you can use:

$ oq export hcurves/rlz-0 --exports csv
$ oq export hmaps/rlz-0 --exports csv
$ oq export uhs/rlz-0 --exports csv

but currently this only works for csv and xml. The exporters are one of the most time-consuming
parts on the engine, mostly because of the sheer number of them; there are more than fifty exporters
and they are always increasing. If you need new exports, please add an issue on GitHub.

9.1 oq zip

An extremely useful command if you need to copy the files associated to a computation from a
machine to another is oq zip:

$ oq zip --help
usage: oq zip [-h] [-r] what [archive_zip]

positional arguments:
what path to a job.ini, a ssmLT.xml file, or an exposure.

→˓xml
archive_zip path to a non-existing .zip file [default: '']

optional arguments:
-h, --help show this help message and exit
-r , --risk-file optional file for risk

48 Chapter 9. Some useful oq commands

https://github.com/gem/oq-engine/issues

OpenQuake for Advanced Users Documentation, Release 3.18.0

For instance, if you have two configuration files job_hazard.ini and job_risk.ini, you can zip all the
files they refer to with the command:

$ oq zip job_hazard.ini -r job_risk.ini

oq zip is actually more powerful than that; other than job.ini files, it can also zip source models:

$ oq zip ssmLT.xml

and exposures:

$ oq zip my_exposure.xml

9.2 Importing a remote calculation

The use-case is importing on your laptop a calculation that was executed on a remote server/cluster.
For that to work you need to create a file a file called openquake.cfg in the virtualenv of the engine
(the output of the command oq info venv, normally it is in $HOME/openquake) with the following
section:

[webapi]
server = https://oq1.wilson.openquake.org/ # change this
username = michele # change this
password = PWD # change this

Then you can import any calculation by simply giving its ID, as in this example:

$ oq importcalc 41214
INFO:root:POST https://oq2.wilson.openquake.org//accounts/ajax_login/
INFO:root:GET https://oq2.wilson.openquake.org//v1/calc/41214/extract/
→˓oqparam
INFO:root:Saving /home/michele/oqdata/calc_41214.hdf5
Downloaded 58,118,085 bytes
{'checksum32': 1949258781,
'date': '2021-03-18T15:25:11',
'engine_version': '3.12.0-gita399903317'}
INFO:root:Imported calculation 41214 successfully

9.2. Importing a remote calculation 49

OpenQuake for Advanced Users Documentation, Release 3.18.0

9.3 plotting commands

The engine provides several plotting commands. They are all experimental and subject to change.
They will always be. The official way to plot the engine results is by using the QGIS plugin. Still,
the oq plotting commands are useful for debugging purposes. Here I will describe the plot_assets
command, which allows to plot the exposure used in a calculation together with the hazard sites:

$ oq plot_assets --help
usage: oq plot_assets [-h] [calc_id]

Plot the sites and the assets

positional arguments:
calc_id a computation id [default: -1]

optional arguments:
-h, --help show this help message and exit

This is particularly interesting when the hazard sites do not coincide with the asset locations, which
is normal when gridding the exposure.

Very often, it is interesting to plot the sources. While there is a primitive functionality for that in
oq plot, we recommend to convert the sources into .gpkg format and use QGIS to plot them:

$ oq nrml_to --help
usage: oq nrml_to [-h] [-o .] [-c] {csv,gpkg} fnames [fnames ...]

Convert source models into CSV files or a geopackage.

positional arguments:
{csv,gpkg} csv or gpkg
fnames source model files in XML

optional arguments:
-h, --help show this help message and exit
-o ., --outdir . output directory
-c, --chatty display sources in progress

For instance

$ oq nrml_to gpkg source_model.xml -o source_model.gpkg

will convert the sources in .gpkg format while

$ oq nrml_to csv source_model.xml -o source_model.csv

will convert the sources in .csv format. Both are fully supported by QGIS. The CSV format has the

50 Chapter 9. Some useful oq commands

OpenQuake for Advanced Users Documentation, Release 3.18.0

advantage of being transparent and easily editable; it also can be imported in a geospatial database
like Postgres, if needed.

9.4 prepare_site_model

The command oq prepare_site_model, introduced in engine 3.3, is quite useful if you have a vs30
file with fields lon, lat, vs30 and you want to generate a site model from it. Normally this feature
is used for risk calculations: given an exposure, one wants to generate a collection of hazard sites
covering the exposure and with vs30 values extracted from the vs30 file with a nearest neighbour
algorithm:

$ oq prepare_site_model -h
usage: oq prepare_site_model [-h] [-1] [-2] [-3]

[-e [EXPOSURE_XML [EXPOSURE_XML ...]]]
[-s SITES_CSV] [-g 0] [-a 5] [-o site_model.

→˓csv]
vs30_csv [vs30_csv ...]

Prepare a site_model.csv file from exposure xml files/site csv files,␣
→˓vs30 csv
files and a grid spacing which can be 0 (meaning no grid). For each site␣
→˓the
closest vs30 parameter is used. The command can also generate (on demand)␣
→˓the
additional fields z1pt0, z2pt5 and vs30measured which may be needed by␣
→˓your
hazard model, depending on the required GSIMs.

positional arguments:
vs30_csv files with lon,lat,vs30 and no header

optional arguments:
-h, --help show this help message and exit
-1, --z1pt0
-2, --z2pt5 build the z2pt5
-3, --vs30measured build the vs30measured
-e [EXPOSURE_XML [EXPOSURE_XML ...]], --exposure-xml [EXPOSURE_XML␣

→˓[EXPOSURE_XML ...]]
exposure(s) in XML format

-s SITES_CSV, --sites-csv SITES_CSV
-g 0, --grid-spacing 0

grid spacing in km (the default 0 means no grid)
(continues on next page)

9.4. prepare_site_model 51

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
-a 5, --assoc-distance 5

sites over this distance are discarded
-o site_model.csv, --output site_model.csv

output file

The command works in two modes: with non-gridded exposures (the default) and with gridded ex-
posures. In the first case the assets are aggregated in unique locations and for each location the vs30
coming from the closest vs30 record is taken. In the second case, when a grid_spacing parameter
is passed, a grid containing all of the exposure is built and the points with assets are associated to
the vs30 records. In both cases if the closest vs30 record is over the site_param_distance - which
by default is 5 km - a warning is printed.

In large risk calculations, it is quite preferable to use the gridded mode because with a well spaced
grid,

1) the results are the nearly the same than without the grid and

2) the calculation is a lot faster and uses a lot less memory.

Gridding of the exposure makes large calculations more manageable. The command is able to
manage multiple Vs30 files at once. Here is an example of usage:

$ oq prepare_site_model Vs30/Ecuador.csv Vs30/Bolivia.csv -e Exposure/
→˓Exposure_Res_Ecuador.csv Exposure/Exposure_Res_Bolivia.csv --grid-
→˓spacing=10

9.5 Reducing the source model

Source models are usually large, at the continental scale. If you are interested in a city or in a small
region, it makes sense to reduce the model to only the sources that would affect the region, within
the integration distance. To fulfil this purpose there is the oq reduce_sm command. The suggestion
is run a preclassical calculation (i.e. set calculation_mode=preclassical in the job.ini) with the full
model in the region of interest, keep track of the calculation ID and then run:

$ oq reduce_sm <calc_id>

The command will reduce the source model files and add an extension .bak to the original ones.

$ oq reduce_sm -h
usage: oq reduce_sm [-h] calc_id

Reduce the source model of the given (pre)calculation by discarding all
sources that do not contribute to the hazard.

(continues on next page)

52 Chapter 9. Some useful oq commands

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)

positional arguments:
calc_id calculation ID

optional arguments:
-h, --help show this help message and exit

9.6 Comparing hazard results

If you are interested in sensitivity analysis, i.e. in how much the results of the engine change by tun-
ing a parameter, the oq compare command is useful. It is able to compare many things, depending
on the engine version. Here are a few examples:

$ oq compare hcurves --help
usage: oq compare hcurves [-h] [-f] [-s] [-r 0] [-a 0.001] imt calc_ids␣
→˓[calc_ids ...]

Compare the hazard curves of two or more calculations.

positional arguments:
imt intensity measure type to compare
calc_ids calculation IDs

optional arguments:
-h, --help show this help message and exit
-f, --files write the results in multiple files
-s , --samplesites sites to sample (or fname with site IDs)
-r 0, --rtol 0 relative tolerance
-a 0.001, --atol 0.001

absolute tolerance

$ oq compare hmaps --help
usage: oq compare hmaps [-h] [-f] [-s] [-r 0] [-a 0.001] imt calc_ids␣
→˓[calc_ids ...]

Compare the hazard maps of two or more calculations.

positional arguments:
imt intensity measure type to compare
calc_ids calculation IDs

(continues on next page)

9.6. Comparing hazard results 53

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
optional arguments:

-h, --help show this help message and exit
-f, --files write the results in multiple files
-s , --samplesites sites to sample (or fname with site IDs)
-r 0, --rtol 0 relative tolerance
-a 0.001, --atol 0.001

absolute tolerance

$ oq compare uhs --help
usage: oq compare uhs [-h] [-f] [-s] [-r 0] [-a 0.001] calc_ids [calc_ids␣
→˓...]

Compare the uniform hazard spectra of two or more calculations.

positional arguments:
calc_ids calculation IDs

optional arguments:
-h, --help show this help message and exit
-f, --files write the results in multiple files
-s , --samplesites sites to sample (or fname with site IDs)
-r 0, --rtol 0 relative tolerance
-a 0.001, --atol 0.001

absolute tolerance

Notice the compare uhs is able to compare all IMTs at once, so it is the most convenient to use if
there are many IMTs.

9.7 Showing calculation attributes

The command oq show_attrs offers a convenient way to retrieve the attributes of a calculation
without needing to open the datastore with any external tools:

$ oq show_attrs -h
usage: oq show_attrs [-h] key [calc_id]

Show the attributes of a HDF5 dataset in the datastore.

positional arguments:
key key of the datastore
calc_id calculation ID [default: -1]

(continues on next page)

54 Chapter 9. Some useful oq commands

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)

options:
-h, --help show this help message and exit

If the key / is requested, the root attributes are retrieved. For instance:

$ oq show_attrs / 4

checksum32 1572793419
date 2023-04-25T08:19:33
engine_version 3.17.0-gitcae0748
input_size 4021

If the calculation id is not specified, the value of the requested key is retrieved for the latest calcu-
lation.

9.8 Mosaic-related commands

Mosaic-related commands are defined as subcommands of the oq mosaic command:

$ oq mosaic -h
usage: oq mosaic [-h] {run_site,sample_rups,sample_gmfs} ...

positional arguments:
{run_site,sample_rups,sample_gmfs}

available subcommands; use oq mosaic <subcmd> --
→˓help

options:
-h, --help show this help message and exit

9.8.1 Running a PSHA analysis

The oq mosaic run_site subcommand gives the possibility to run a PSHA analysis for a site on the
given longitude and latitude, or for multiple sites specified in a CSV file:

$ oq mosaic run_site -h
usage: oq mosaic run_site [-h] [--hc HC] [-s SLOWEST] [-c 8] lonlat_or_
→˓fname

(continues on next page)

9.8. Mosaic-related commands 55

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
Run a PSHA analysis on the given lon, lat

positional arguments:
lonlat_or_fname lon,lat of the site to analyze or CSV file

options:
-h, --help show this help message and exit
--hc HC previous calculation ID
-s SLOWEST, --slowest SLOWEST

profile and show the slowest operations
-c 8, --concurrent-jobs 8

maximum number of concurrent jobs

If a CSV file is provided, it must contain in each row a site identifier starting with the 3-character
code of the mosaic model that covers it, and the longitude and latitude of the site, separated by
commas.

9.8.2 Sampling ruptures

The oq mosaic sample_rups subcommand gives the possibility to sample the ruptures of the given
model in the mosaic with an effective investigation time of 100,000 years:

$ oq mosaic sample_rups -h
usage: oq mosaic sample_rups [-h] [-s SLOWEST] model

Sample the ruptures of the given model in the mosaic with an effective␣
→˓investigation time of 100,000 years

positional arguments:
model 3-letter name of the model

options:
-h, --help show this help message and exit
-s SLOWEST, --slowest SLOWEST

profile and show the slowest operations

56 Chapter 9. Some useful oq commands

OpenQuake for Advanced Users Documentation, Release 3.18.0

9.8.3 Sampling ground motion fields

The oq mosaic sample_gmfs subcommand gives the possiblity to sample the gmfs of the given
model in the mosaic with an effective investigation time of 100,000 years:

$ oq mosaic sample_gmfs -h
usage: oq mosaic sample_gmfs [-h] [-t -1] [-m 0.0] [-e 1000.0] [--hc HC]␣
→˓[-s SLOWEST] model

Sample the gmfs of the given model in the mosaic with an effective␣
→˓investigation time of 100,000 years

positional arguments:
model 3-letter name of the model

options:
-h, --help show this help message and exit
-t -1, --trunclevel -1

truncation level (default: the one in job_vs30.
→˓ini)
-m 0.0, --mindist 0.0

minimum_distance (default: 0)
-e 1000.0, --extreme-gmv 1000.0

threshold above which a GMV is extreme
--hc HC previous hazard calculation
-s SLOWEST, --slowest SLOWEST

profile and show the slowest operations

9.8. Mosaic-related commands 57

OpenQuake for Advanced Users Documentation, Release 3.18.0

58 Chapter 9. Some useful oq commands

CHAPTER

TEN

LOGIC TREES

Logic trees are documented in the OpenQuake manual (section “Defining Logic Trees”). However
some features are only mentioned without giving examples (such as applyToBranches) and some
recent developments are missing, in particular the extendModel feature. Here we will document
both.

10.1 extendModel

Starting from engine 3.9 it is possible to define logic trees by adding sources to one or more base
models. An example will make things clear:

<?xml version="1.0" encoding="UTF-8"?>
<nrml xmlns:gml="http://www.opengis.net/gml"

xmlns="http://openquake.org/xmlns/nrml/0.5">
<logicTree logicTreeID="lt1">
<logicTreeBranchSet uncertaintyType="sourceModel"

branchSetID="bs0">
<logicTreeBranch branchID="A">
<uncertaintyModel>common1.xml</uncertaintyModel>
<uncertaintyWeight>0.6</uncertaintyWeight>

</logicTreeBranch>
<logicTreeBranch branchID="B">
<uncertaintyModel>common2.xml</uncertaintyModel>
<uncertaintyWeight>0.4</uncertaintyWeight>

</logicTreeBranch>
</logicTreeBranchSet>
<logicTreeBranchSet uncertaintyType="extendModel" branchSetID="bs1">
<logicTreeBranch branchID="C">
<uncertaintyModel>extra1.xml</uncertaintyModel>
<uncertaintyWeight>0.6</uncertaintyWeight>

</logicTreeBranch>
(continues on next page)

59

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
<logicTreeBranch branchID="D">
<uncertaintyModel>extra2.xml</uncertaintyModel>
<uncertaintyWeight>0.2</uncertaintyWeight>

</logicTreeBranch>
<logicTreeBranch branchID="E">
<uncertaintyModel>extra3.xml</uncertaintyModel>
<uncertaintyWeight>0.2</uncertaintyWeight>

</logicTreeBranch>
</logicTreeBranchSet>

</logicTree>
</nrml>

In this example there are two base source models, named commom1.xml and common2.xml and
three possibile extensions extra1.xml, extra2.xml and extra3.xml. The engine will generate
six effective source models by extending first common1.xml and then common2.xml with extra1.
xml, then with extra2.xml and then with extra3.xml respectively. Notice that extra1.xml,
extra2.xml and extra3.xml can be different versions of the same sources with different param-
eters or geometries, so extendModel can be used to implement correlated uncertainties.

Since engine 3.15 it is possible to describe logic trees as python lists (one list for each branchset)
and to programmatically generate the realizations by using a simplified logic tree implementation in
hazardlib. This is extremely useful. For instance, the logic tree above would be written as follows:

>>> from openquake.hazardlib.lt import build
>>> logictree = build(
... ['sourceModel', [], ['A', 'common1.xml', 0.6],
... ['B', 'common2.xml', 0.4]],
... ['extendModel', [], ['C', 'extra1.xml', 0.6],
... ['D', 'extra2.xml', 0.2],
... ['E', 'extra3.xml', 0.2]])

and the 6 possible paths can be extracted as follows:

>>> logictree.get_all_paths() # 2 x 3 paths
['AC', 'AD', 'AE', 'BC', 'BD', 'BE']

The empty square brackets means that the branchset should be applied to all branches in the previous
branchset and correspond to the applyToBranches tag in the XML version of the logic tree. If
applyToBranches is missing, the logic tree is multiplicative and the total number of paths can be
obtained simply by multiplying the number of paths in each branchset. When applyToBranches
is used, the logic tree becomes additive and the total number of paths can be obtained by summing
the number of paths in the different subtrees. For instance, let us extend the previous example by
adding another extendModel branchset and by using applyToBranches:

60 Chapter 10. Logic Trees

OpenQuake for Advanced Users Documentation, Release 3.18.0

<?xml version="1.0" encoding="UTF-8"?>
<nrml xmlns:gml="http://www.opengis.net/gml"

xmlns="http://openquake.org/xmlns/nrml/0.4">
<logicTree logicTreeID="lt1">
<logicTreeBranchSet uncertaintyType="sourceModel"

branchSetID="bs0">
<logicTreeBranch branchID="A">
<uncertaintyModel>common1.xml</uncertaintyModel>
<uncertaintyWeight>0.6</uncertaintyWeight>

</logicTreeBranch>
<logicTreeBranch branchID="B">
<uncertaintyModel>common2.xml</uncertaintyModel>
<uncertaintyWeight>0.4</uncertaintyWeight>

</logicTreeBranch>
</logicTreeBranchSet>
<logicTreeBranchSet uncertaintyType="extendModel" branchSetID="bs1"

applyToBranches="A">
<logicTreeBranch branchID="C">
<uncertaintyModel>extra1.xml</uncertaintyModel>
<uncertaintyWeight>0.6</uncertaintyWeight>

</logicTreeBranch>
<logicTreeBranch branchID="D">
<uncertaintyModel>extra2.xml</uncertaintyModel>
<uncertaintyWeight>0.2</uncertaintyWeight>

</logicTreeBranch>
<logicTreeBranch branchID="E">
<uncertaintyModel>extra3.xml</uncertaintyModel>
<uncertaintyWeight>0.2</uncertaintyWeight>

</logicTreeBranch>
</logicTreeBranchSet>
<logicTreeBranchSet uncertaintyType="extendModel" branchSetID="bs2"

applyToBranches="B">
<logicTreeBranch branchID="F">
<uncertaintyModel>extra4.xml</uncertaintyModel>
<uncertaintyWeight>0.6</uncertaintyWeight>

</logicTreeBranch>
<logicTreeBranch branchID="G">
<uncertaintyModel>extra5.xml</uncertaintyModel>
<uncertaintyWeight>0.4</uncertaintyWeight>

</logicTreeBranch>
</logicTreeBranchSet>

</logicTree>
</nrml>

10.1. extendModel 61

OpenQuake for Advanced Users Documentation, Release 3.18.0

In this case only 3 + 2 = 5 paths are considered. You can see which are the combinations by building
the logic tree:

>>> logictree = build(
... ['sourceModel', [], ['A', 'common1.xml', 0.6],
... ['B', 'common2.xml', 0.4]],
... ['extendModel', ['A'], ['C', 'extra1.xml', 0.6],
... ['D', 'extra2.xml', 0.2],
... ['E', 'extra3.xml', 0.2]],
... ['extendModel', ['B'], ['F', 'extra4.xml', 0.6],
... ['G', 'extra5.xml', 0.4]])
>>> logictree.get_all_paths() # 3 + 2 paths
['AC.', 'AD.', 'AE..', 'BF.', 'BG.']

applyToBranches can be used in different ways. For instance you can attach the second
extendModel to everything and get 8 paths:

>>> logictree = build(
... ['sourceModel', [], ['A', 'common1.xml', 0.6],
... ['B', 'common2.xml', 0.4]],
... ['extendModel', ['A'], ['C', 'extra1.xml', 0.6],
... ['D', 'extra2.xml', 0.2],
... ['E', 'extra3.xml', 0.2]],
... ['extendModel', [], ['F', 'extra4.xml', 0.6],
... ['G', 'extra5.xml', 0.4]])
>>> logictree.get_all_paths() # 3 * 2 + 2 paths
['ACF', 'ACG', 'ADF', 'ADG', 'AEF', 'AEG', 'B.F', 'B.G']

The complete realizations can be obtained by not specifying applyToBranches:

>>> logictree = build(
... ['sourceModel', [], ['A', 'common1.xml', 0.6],
... ['B', 'common2.xml', 0.4]],
... ['extendModel', [], ['C', 'extra1.xml', 0.6],
... ['D', 'extra2.xml', 0.2],
... ['E', 'extra3.xml', 0.2]],
... ['extendModel', [], ['F', 'extra4.xml', 0.6],
... ['G', 'extra5.xml', 0.4]])
>>> logictree.get_all_paths() # 2 * 3 * 2 = 12 paths
['ACF', 'ACG', 'ADF', 'ADG', 'AEF', 'AEG', 'BCF', 'BCG', 'BDF', 'BDG',
→˓'BEF', 'BEG']

62 Chapter 10. Logic Trees

OpenQuake for Advanced Users Documentation, Release 3.18.0

10.2 The logic tree demo

As another example we will consider the demo LogicTreeCase2ClassicalPSHA in the engine
distribution; the logic tree has the following structure:

>>> lt = build(
... ['sourceModel', [], ['b11', 'source_model.xml', .333]],
... ['abGRAbsolute', [], ['b21', '4.6 1.1', .333],
... ['b22', '4.5 1.0', .333],
... ['b23', '4.4 0.9', .334]],
... ['abGRAbsolute', [], ['b31', '3.3 1.0', .333],
... ['b32', '3.2 0.9', .333],
... ['b33', '3.1 0.0', .334]],
... ['maxMagGRAbsolute', [], ['b41', 7.0, .333],
... ['b42', 7.3, .333],
... ['b43', 7.6, .334]],
... ['maxMagGRAbsolute', [], ['b51', 7.5, .333],
... ['b52', 7.8, .333],
... ['b53', 8.0, .334]],
... ['Active Shallow Crust', [], ['c11', 'BA08', .5],
... ['c12', 'CY12', .5]],
... ['Stable Continental Crust', [], ['c21', 'TA02', .5],
... ['c22', 'CA03', .5]])

Since the demo is using full enumeration there are 1*3*3*3*3*2*2 = 324 realizations in total that
you can build as follows:

>>> import numpy
>>> paths = numpy.array(lt.get_all_paths())
>>> for row in paths.reshape(36, 9):
... print(' '.join(row))
AADGJMO AADGJMP AADGJNO AADGJNP AADGKMO AADGKMP AADGKNO AADGKNP AADGLMO
AADGLMP AADGLNO AADGLNP AADHJMO AADHJMP AADHJNO AADHJNP AADHKMO AADHKMP
AADHKNO AADHKNP AADHLMO AADHLMP AADHLNO AADHLNP AADIJMO AADIJMP AADIJNO
AADIJNP AADIKMO AADIKMP AADIKNO AADIKNP AADILMO AADILMP AADILNO AADILNP
AAEGJMO AAEGJMP AAEGJNO AAEGJNP AAEGKMO AAEGKMP AAEGKNO AAEGKNP AAEGLMO
AAEGLMP AAEGLNO AAEGLNP AAEHJMO AAEHJMP AAEHJNO AAEHJNP AAEHKMO AAEHKMP
AAEHKNO AAEHKNP AAEHLMO AAEHLMP AAEHLNO AAEHLNP AAEIJMO AAEIJMP AAEIJNO
AAEIJNP AAEIKMO AAEIKMP AAEIKNO AAEIKNP AAEILMO AAEILMP AAEILNO AAEILNP
AAFGJMO AAFGJMP AAFGJNO AAFGJNP AAFGKMO AAFGKMP AAFGKNO AAFGKNP AAFGLMO
AAFGLMP AAFGLNO AAFGLNP AAFHJMO AAFHJMP AAFHJNO AAFHJNP AAFHKMO AAFHKMP
AAFHKNO AAFHKNP AAFHLMO AAFHLMP AAFHLNO AAFHLNP AAFIJMO AAFIJMP AAFIJNO
AAFIJNP AAFIKMO AAFIKMP AAFIKNO AAFIKNP AAFILMO AAFILMP AAFILNO AAFILNP
ABDGJMO ABDGJMP ABDGJNO ABDGJNP ABDGKMO ABDGKMP ABDGKNO ABDGKNP ABDGLMO

(continues on next page)

10.2. The logic tree demo 63

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
ABDGLMP ABDGLNO ABDGLNP ABDHJMO ABDHJMP ABDHJNO ABDHJNP ABDHKMO ABDHKMP
ABDHKNO ABDHKNP ABDHLMO ABDHLMP ABDHLNO ABDHLNP ABDIJMO ABDIJMP ABDIJNO
ABDIJNP ABDIKMO ABDIKMP ABDIKNO ABDIKNP ABDILMO ABDILMP ABDILNO ABDILNP
ABEGJMO ABEGJMP ABEGJNO ABEGJNP ABEGKMO ABEGKMP ABEGKNO ABEGKNP ABEGLMO
ABEGLMP ABEGLNO ABEGLNP ABEHJMO ABEHJMP ABEHJNO ABEHJNP ABEHKMO ABEHKMP
ABEHKNO ABEHKNP ABEHLMO ABEHLMP ABEHLNO ABEHLNP ABEIJMO ABEIJMP ABEIJNO
ABEIJNP ABEIKMO ABEIKMP ABEIKNO ABEIKNP ABEILMO ABEILMP ABEILNO ABEILNP
ABFGJMO ABFGJMP ABFGJNO ABFGJNP ABFGKMO ABFGKMP ABFGKNO ABFGKNP ABFGLMO
ABFGLMP ABFGLNO ABFGLNP ABFHJMO ABFHJMP ABFHJNO ABFHJNP ABFHKMO ABFHKMP
ABFHKNO ABFHKNP ABFHLMO ABFHLMP ABFHLNO ABFHLNP ABFIJMO ABFIJMP ABFIJNO
ABFIJNP ABFIKMO ABFIKMP ABFIKNO ABFIKNP ABFILMO ABFILMP ABFILNO ABFILNP
ACDGJMO ACDGJMP ACDGJNO ACDGJNP ACDGKMO ACDGKMP ACDGKNO ACDGKNP ACDGLMO
ACDGLMP ACDGLNO ACDGLNP ACDHJMO ACDHJMP ACDHJNO ACDHJNP ACDHKMO ACDHKMP
ACDHKNO ACDHKNP ACDHLMO ACDHLMP ACDHLNO ACDHLNP ACDIJMO ACDIJMP ACDIJNO
ACDIJNP ACDIKMO ACDIKMP ACDIKNO ACDIKNP ACDILMO ACDILMP ACDILNO ACDILNP
ACEGJMO ACEGJMP ACEGJNO ACEGJNP ACEGKMO ACEGKMP ACEGKNO ACEGKNP ACEGLMO
ACEGLMP ACEGLNO ACEGLNP ACEHJMO ACEHJMP ACEHJNO ACEHJNP ACEHKMO ACEHKMP
ACEHKNO ACEHKNP ACEHLMO ACEHLMP ACEHLNO ACEHLNP ACEIJMO ACEIJMP ACEIJNO
ACEIJNP ACEIKMO ACEIKMP ACEIKNO ACEIKNP ACEILMO ACEILMP ACEILNO ACEILNP
ACFGJMO ACFGJMP ACFGJNO ACFGJNP ACFGKMO ACFGKMP ACFGKNO ACFGKNP ACFGLMO
ACFGLMP ACFGLNO ACFGLNP ACFHJMO ACFHJMP ACFHJNO ACFHJNP ACFHKMO ACFHKMP
ACFHKNO ACFHKNP ACFHLMO ACFHLMP ACFHLNO ACFHLNP ACFIJMO ACFIJMP ACFIJNO
ACFIJNP ACFIKMO ACFIKMP ACFIKNO ACFIKNP ACFILMO ACFILMP ACFILNO ACFILNP

The engine is computing all such realizations; after running the calculations you will see an output
called “Realizations”. If you export it, you will get a CSV file with the following structure:

#,,"generated_by='OpenQuake engine 3.13..."
rlz_id,branch_path,weight
0,AAAAA~AA,3.0740926e-03
1,AAAAA~AB,3.0740926e-03
...
322,ACCCC~BA,3.1111853e-03
323,ACCCC~BB,3.1111853e-03

For each realization there is a branch_path string which is split in two parts separated by a tilde.
The left part describes the branches of the source model logic tree and the right part the branches of
the gmpe logic tree. In past versions of the engine the branch path was using directly the branch IDs,
so it was easy to assess the correspondence between each realization and the associated branches.

Unfortunately, we had to remove that direct correspondence in engine 3.11. The reason is that
engine is used in situations where the logic tree has billions of billions of billions . . . of billions
potential realizations, with hundreds of branchsets. If you have 100 branchsets and the branch IDs
are 10 characters long, each branch path will be 1000 characters long and impossible to display. The

64 Chapter 10. Logic Trees

OpenQuake for Advanced Users Documentation, Release 3.18.0

compact representation requires only 1-character per branchset instead. It is possible to pass from
the compact representation to the original branch IDs by using the command oq show branches:

$ oq show branches
| branch_id | abbrev | uvalue |
|-----------+--------+---------------------|
b11	A0	source_model.xml
b21	A1	4.60000 1.10000
b22	B1	4.50000 1.00000
b23	C1	4.40000 0.90000
b31	A2	3.30000 1.00000
b32	B2	3.20000 0.90000
b33	C2	3.10000 0.80000
b41	A3	7.00000
b42	B3	7.30000
b43	C3	7.60000
b51	A4	7.50000
b52	B4	7.80000
b53	C4	8.00000
b11	A0	[BooreAtkinson2008]
b12	B0	[ChiouYoungs2008]
b21	A1	[ToroEtAl2002]
b22	B1	[Campbell2003]

The first character of the abbrev specifies the branch number (“A” means the first branch, “B”
the second, etc) while the other characters are the branch set number starting from zero. The for-
mat works up to 184 branches per branchset, using printable UTF8 characters. For instance the
realization #322 has the following branch path in compact form:

ACCCC~BA

which will expand to the following abbreviations (considering that fist “A” corresponds to the
branchset 0, the first “C” to branchset 1, the second “C” to branchset 2, the third “C” to branchset
3, the fourth “C” to branchset 4, “B” to branchset 0 of the GMPE logic tree and the last “A” to
branchset 1 of the GMPE logic tree):

A0 C1 C2 C3 C4 ~ B0 A1

and then, using the correspondence table abbrev->uvalue, to:

"source_model.xml" "4.4 0.9" "3.1 0.8" "7.6" "8.0" ~
"[ChiouYoungs2008]" "[ToroEtAl2002]"

For convenience, the engine provides a simple command to display the content of a realization,
given the realization number:

10.2. The logic tree demo 65

OpenQuake for Advanced Users Documentation, Release 3.18.0

$ oq show rlz:322
| uncertainty_type | uvalue |
|--------------------------+-------------------|
sourceModel	source_model.xml
abGRAbsolute	4.40000 0.90000
abGRAbsolute	3.10000 0.80000
maxMagGRAbsolute	7.60000
maxMagGRAbsolute	8.00000
Active Shallow Crust	[ChiouYoungs2008]
Stable Continental Crust	[ToroEtAl2002]

NB: the commands oq show branches and oq show rlz are new in engine 3.13: they may change in
the future and the string representation of the branch path may change too. It has already changed
twice in engine 3.11 and engine 3.12. You cannot rely on it across engine versions.

10.3 The concept of effective realizations

The management of the logic trees is the most complicated thing in the OpenQuake engine. It is
important to manage the logic trees in an efficient way, by avoiding redundant computation and
storage, otherwise the engine will not be able to cope with large computations. To that aim, it is
essential to understand the concept of effective realizations.

The crucial point is that in many calculations it is possible to reduce the full logic tree (the tree of
the potential realizations) to a much smaller one (the tree of the effective realizations).

First, it is best to give some terminology.

1. for each source model in the source model logic tree there is potentially a different GMPE
logic tree

2. the total number of realizations is the sum of the number of realizations of each GMPE logic
tree

3. a GMPE logic tree is trivial if it has no tectonic region types with multiple GMPEs

4. a GMPE logic tree is simple if it has at most one tectonic region type with multiple GMPEs

5. a GMPE logic tree is complex if it has more than one tectonic region type with multiple
GMPEs.

Here is an example of trivial GMPE logic tree, in its XML input representation:

<?xml version="1.0" encoding="UTF-8"?>
<nrml xmlns:gml="http://www.opengis.net/gml"

xmlns="http://openquake.org/xmlns/nrml/0.4">
<logicTree logicTreeID='lt1'>

(continues on next page)

66 Chapter 10. Logic Trees

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
<logicTreeBranchSet uncertaintyType="gmpeModel" branchSetID=

→˓"bs1"
applyToTectonicRegionType="active shallow crust">

<logicTreeBranch branchID="b1">
<uncertaintyModel>SadighEtAl1997</uncertaintyModel>
<uncertaintyWeight>1.0</uncertaintyWeight>

</logicTreeBranch>

</logicTreeBranchSet>
</logicTree>

</nrml>

The logic tree is trivial since there is a single branch (“b1”) and GMPE (“SadighEtAl1997”) for each
tectonic region type (“active shallow crust”). A logic tree with multiple branches can be simple,
or even trivial if the tectonic region type with multiple branches is not present in the underlying
source model. This is the key to the logic tree reduction concept.

10.4 Reduction of the logic tree

The simplest case of logic tree reduction is when the actual sources do not span the full range of
tectonic region types in the GMPE logic tree file. This happens very often. For instance, in the
SHARE calculation for Europe the GMPE logic tree potentially contains 1280 realizations coming
from 7 different tectonic region types:

Active_Shallow:
4 GMPEs (b1, b2, b3, b4)

Stable_Shallow:
5 GMPEs (b21, b22, b23, b24, b25)

Shield:
2 GMPEs (b31, b32)

Subduction_Interface:
4 GMPEs (b41, b42, b43, b44)

Subduction_InSlab:
4 GMPEs (b51, b52, b53, b54)

Volcanic:
1 GMPE (b61)

Deep:
2 GMPEs (b71, b72)

10.4. Reduction of the logic tree 67

OpenQuake for Advanced Users Documentation, Release 3.18.0

The number of paths in the logic tree is 4 * 5 * 2 * 4 * 4 * 1 * 2 = 1280, pretty large. We say that
there are 1280 potential realizations per source model. However, in most computations, the user
will be interested only in a subset of them. For instance, if the sources contributing to your region
of interest are only of kind Active_Shallow and Stable_Shallow, you would consider only 4 * 5 = 20
effective realizations instead of 1280. Doing so may improve the computation time and the needed
storage by a factor of 1280 / 20 = 64, which is very significant.

Having motivated the need for the concept of effective realizations, let explain how it works in
practice. For sake of simplicity let us consider the simplest possible situation, when there are two
tectonic region types in the logic tree file, but the engine contains only sources of one tectonic
region type. Let us assume that for the first tectonic region type (T1) the GMPE logic tree file
contains 3 GMPEs (A, B, C) and that for the second tectonic region type (T2) the GMPE logic tree
file contains 2 GMPEs (D, E). The total number of realizations (assuming full enumeration) is

total_num_rlzs = 3 * 2 = 6

The realizations are identified by an ordered pair of GMPEs, one for each tectonic region type. Let’s
number the realizations, starting from zero, and let’s identify the logic tree path with the notation
<GMPE of first region type>_<GMPE of second region type>:

lt_path
0 A_D
1 B_D
2 C_D
3 A_E
4 B_E
5 C_E

Now assume that the source model does not contain sources of tectonic region type T1, or that such
sources are filtered away since they are too distant to have an effect: in such a situation we would
expect to have only 2 effective realizations corresponding to the GMPEs in the second tectonic
region type. The weight of each effective realizations will be three times the weight of a regular
representation, since three different paths in the first tectonic region type will produce exactly the
same result. It is not important which GMPE was chosen for the first tectonic region type because
there are no sources of kind T1. In such a situation there will be 2 effective realizations coming
from a total of 6 total realizations. It means that there will be three copies of the outputs, i.e. three
identical outputs for each effective realization.

Starting from engine 3.9 the logic tree reduction must be performed manually, by discarding the
irrelevant tectonic region types; in this example the user must add in the job.ini a line

discard_trts = Shield, Subduction_Interface, Subduction_InSlab, Volcanic,
Deep

If not, multiple copies of the same outputs will appear.

68 Chapter 10. Logic Trees

OpenQuake for Advanced Users Documentation, Release 3.18.0

10.5 How to analyze the logic tree of a calculation without
running the calculation

The engine provides some facilities to explore the logic tree of a computation without running it.
The command you need is the oq info command.

Let’s assume that you have a zip archive called SHARE.zip containing the SHARE source model,
the SHARE source model logic tree file and the SHARE GMPE logic tree file as provided by the
SHARE collaboration, as well as a job.ini file. If you run

$ oq info SHARE.zip

all the files will be parsed and the full logic tree of the computation will be generated. This is very
fast, it runs in exactly 1 minute on my laptop, which is impressive, since the XML of the SHARE
source models is larger than 250 MB. Such speed come with a price: all the sources are parsed, but
they are not filtered, so you will get the complete logic tree, not the one used by your computation,
which will likely be reduced because filtering will likely remove some tectonic region types.

The output of the info command will start with a CompositionInfo object, which contains informa-
tion about the composition of the source model. You will get something like this:

<CompositionInfo
b1, area_source_model.xml, trt=[0, 1, 2, 3, 4, 5, 6], weight=0.500: 1280␣
→˓realization(s)
b2, faults_backg_source_model.xml, trt=[7, 8, 9, 10, 11, 12, 13],␣
→˓weight=0.200: 1280 realization(s)
b3, seifa_model.xml, trt=[14, 15, 16, 17, 18, 19], weight=0.300: 640␣
→˓realization(s)>

You can read the lines above as follows. The SHARE model is composed by three submodels:

• area_source_model.xml contains 7 Tectonic Region Types numbered from 0 to 7 and pro-
duces 1280 potential realizations;

• faults_backg_source_model.xml contains 7 Tectonic Region Types numbered from 7 to 13
and produces 1280 potential realizations;

• seifa_model.xml contains 6 Tectonic Region Types numbered from 14 to 19 and produces
640 potential realizations;

In practice, you want to know if your complete logic tree will be reduced by the filtering, i.e. you
want to know the effective realizations, not the potential ones. You can perform that check by using
the –report flag. This will generate a report with a name like report_<calc_id>.rst:

$ oq info --report SHARE.zip
...
[2020-04-14 11:11:50 #2493 WARNING] No sources for some TRTs: you should␣

(continues on next page)

10.5. How to analyze the logic tree of a calculation without running the calculation69

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
→˓set
discard_trts = Subduction_InSlab, Deep
...
Generated /home/michele/report_2493.rst

If you open that file you will find a lot of useful information about the source model, its composition,
the number of sources and ruptures and the effective realizations.

Depending on the location of the points and the maximum distance, one or more submodels could
be completely filtered out and could produce zero effective realizations, so the reduction effect
could be even stronger.

In any case the warning tells the user what she should do in order to remove the duplication and
reduce the calculation only to the effective realizations, i.e. which are the TRTs to discard in the
job.ini file.

70 Chapter 10. Logic Trees

CHAPTER

ELEVEN

SOURCE SPECIFIC LOGIC TREES

There are situations in which the hazard model is comprised by a small number of sources, and for
each source there is an individual logic tree managing the uncertainty of a few parameters. In such
situations we say that we have a Source Specific Logic Tree.

Such situation is esemplified by the demo that you can find in the directory demos/hazard/
LogicTreeCase2ClassicalPSHA, which has the following logic tree, in XML form:

As you can see, each branchset has an applyToSources attribute, pointing to one of the two sources
in the hazard model, therefore we have a source specific logic tree.

In compact form we can represent the logic tree as the composition of two source specific logic
trees with the following branchsets:

src "1": [<abGRAbsolute(3)>, <maxMagGRAbsolute(3)>]
src "2": [<abGRAbsolute(3)>, <maxMagGRAbsolute(3)>]

The (X) notation denotes the number of branches for each branchset and multiplying such numbers
we can deduce the size of the full logic tree (ignoring the gsim logic tree for sake of simplificity):

(3 x 3 for src "1") x (3 x 3 for src "2") = 81 realizations

It is possible to see the full logic tree as the product of two source specific logic trees each one with
9 realizations. The interesting thing it that the engine will require storage and computational power
proportional to 9 + 9 = 18 basic components and not to the 9 * 9 = 81 final realizations. In general
if there are N source specific logic trees, each one generating R_i realizations with i in the range
0..N-1, the number of basic components and final realizations are respectively:

C = sum(R_i)
R = prod(R_i)

In the demo the storage is over 4 times less (18 vs 81); in more complex cases the gain than can be
much more impressive. For instance the ZAF model in our mosaic (the national model for South
Africa) contains a source specific logic tree with 22 sources that can be decomposed as follows:

71

OpenQuake for Advanced Users Documentation, Release 3.18.0

In other words, by storing only 186 components we can save enough information to build
24_959_374_950_829_916_160 realizations, with a gain of over 10^17!

11.1 Extracting the hazard curves

While it is impossible to compute the hazard curves for 24_959_374_950_829_916_160 realiza-
tions, it is quite possible to get the source-specific hazard curves. To this end the engine provides
a class HcurvesGetter with a method .get_hcurves which is able to retrieve all the curves
associated to the realizations of the logic tree associated to a specific source. Here is the usage:

from openquake.commonlib.datastore import read
from openquake.calculators.getters import HcurvesGetter

getter = HcurvesGetter(read(-1))
print(getter.get_hcurves('1', 'PGA')) # array of shape (Rs, L)

Looking at the source-specific realizations is useful to assess if the logic tree can be collapsed.

11.2 Sampling of the logic tree

There are real life examples of very large logic trees, like the model for South Africa which features
3,194,799,993,706,229,268,480 branches. In such situations it is impossible to perform a compu-
tation with full enumeration. However, the engine allows to sample the branches of the complete
logic tree. More precisely, for each branch sampled from the source model logic tree, a branch of
the GMPE logic tree is chosen randomly, by taking into account the weights in the GMPE logic
tree file.

It should be noticed that even if source model path is sampled several times, the model is parsed and
sent to the workers only once. In particular if there is a single source model (like for South America)
and number_of_logic_tree_samples =100, we generate effectively 1 source model realization
and not 100 equivalent source model realizations, as we did in past (actually in the engine version
1.3). The engine keeps track of how many times a model has been sampled (say Ns) and in the event
based case it produce ruptures (with different seeds) by calling the appropriate hazardlib function
Ns times. This is done inside the worker nodes. In the classical case, all the ruptures are identical
and there are no seeds, so the computation is done only once, in an efficient way.

72 Chapter 11. Source Specific Logic Trees

CHAPTER

TWELVE

LOGIC TREE SAMPLING STRATEGIES

Stating from version 3.10, the OpenQuake engine suppports 4 different strategies for sampling
the logic tree. They are called, respectively, early_weights, late_weights, early_latin,
late_latin. Here we will discuss how they work.

First of all, we must point out that logic tree sampling is controlled by three parameters in the job.ini:

• number_of_logic_tree_samples (default 0, no sampling)

• sampling_method (default early_weights)

• random_seed (default 42)

When sampling is enabled number_of_logic_tree_samples is a positive number, equal to the
number of branches to be randomly extracted from full logic tree of the calculation. The precise
why the random extraction works depends on the sampling method.

early_weights
With this sampling method, the engine randomly choose branches depending on the weights
in the logic tree; having done that, the hazard curve statistics (mean and quantiles) are com-
puted with equal weights.

late_weights
With this sampling method, the engine randomly choose branches ignoring the weights in
the logic tree; however, the hazard curve statistics are computed by taking into account the
weights.

early_latin
With this sampling method, the engine randomly choose branches depending on the weights
in the logic tree by using an hypercube latin sampling; having done that, the hazard curve
statistics are computed with equal weights.

late_latin
Wit this sampling method, the engine randomly choose branches ignoring the weights in
the logic tree, but still using an hypercube sampling; then, the hazard curve statistics are
computed by taking into account the weights.

More precisely, the engine calls something like the function:

73

OpenQuake for Advanced Users Documentation, Release 3.18.0

openquake.hazardlib.lt.random_sample(
branchsets, num_samples, seed, sampling_method)

You are invited to play with it; in general the latin sampling produces samples much closer to the
expected weights even with few samples. Here in an example with two branchsets with weights [.4,
.6] and [.2, .3, .5] respectively.

>>> import collections
>>> from openquake.hazardlib.lt import random_sample
>>> bsets = [[('X', .4), ('Y', .6)], [('A', .2), ('B', .3), ('C', .5)]]

With 100 samples one would expect to get the path XA 8 times, XB 12 times, XC 20 times, YA 12
times, YB 18 times, YC 30 times. Instead we get:

>>> paths = random_sample(bsets, 100, 42, 'early_weights')
>>> collections.Counter(paths)
Counter({'YC': 26, 'XC': 24, 'YB': 17, 'XA': 13, 'YA': 10, 'XB': 10})

>>> paths = random_sample(bsets, 100, 42, 'late_weights')
>>> collections.Counter(paths)
Counter({'XA': 20, 'YA': 18, 'XB': 17, 'XC': 15, 'YB': 15, 'YC': 15})

>>> paths = random_sample(bsets, 100, 42, 'early_latin')
>>> collections.Counter(paths)
Counter({'YC': 31, 'XC': 19, 'YB': 17, 'XB': 13, 'YA': 12, 'XA': 8})

>>> paths = random_sample(bsets, 100, 45, 'late_latin')
>>> collections.Counter(paths)
Counter({'YC': 18, 'XA': 18, 'XC': 16, 'YA': 16, 'XB': 16, 'YB': 16})

12.1 GMPE logic trees with weighted IMTs

In order to support Canada’s 5th Generation seismic hazard model, the engine now has the ability to
manage GMPE logic trees where the weight assigned to each GMPE may be different for each IMT.
For instance you could have a particular GMPE applied to PGA with a certain weight, to SA(0.1)
with a different weight, and to SA(1.0) with yet another weight. The user may want to assign a
higher weight to the IMTs where the GMPE has a small uncertainty and a lower weight to the IMTs
with a large uncertainty. Moreover a particular GMPE may not be applicable for some periods, and
in that case the user can assign to a zero weight for those periods, in which case the engine will
ignore it entirely for those IMTs. This is useful when you have a logic tree with multiple GMPEs
per branchset, some of which are applicable for some IMTs and not for others. Here is an example:

74 Chapter 12. Logic tree sampling strategies

OpenQuake for Advanced Users Documentation, Release 3.18.0

<logicTreeBranchSet uncertaintyType="gmpeModel" branchSetID="bs1"
applyToTectonicRegionType="Volcanic">

<logicTreeBranch branchID="BooreEtAl1997GeometricMean">
<uncertaintyModel>BooreEtAl1997GeometricMean</uncertaintyModel>
<uncertaintyWeight>0.33</uncertaintyWeight>
<uncertaintyWeight imt="PGA">0.25</uncertaintyWeight>
<uncertaintyWeight imt="SA(0.5)">0.5</uncertaintyWeight>
<uncertaintyWeight imt="SA(1.0)">0.5</uncertaintyWeight>
<uncertaintyWeight imt="SA(2.0)">0.5</uncertaintyWeight>

</logicTreeBranch>
<logicTreeBranch branchID="SadighEtAl1997">

<uncertaintyModel>SadighEtAl1997</uncertaintyModel>
<uncertaintyWeight>0.33</uncertaintyWeight>
<uncertaintyWeight imt="PGA">0.25</uncertaintyWeight>
<uncertaintyWeight imt="SA(0.5)">0.5</uncertaintyWeight>
<uncertaintyWeight imt="SA(1.0)">0.5</uncertaintyWeight>
<uncertaintyWeight imt="SA(2.0)">0.5</uncertaintyWeight>

</logicTreeBranch>
<logicTreeBranch branchID="MunsonThurber1997Hawaii">

<uncertaintyModel>MunsonThurber1997Hawaii</uncertaintyModel>
<uncertaintyWeight>0.34</uncertaintyWeight>
<uncertaintyWeight imt="PGA">0.25</uncertaintyWeight>
<uncertaintyWeight imt="SA(0.5)">0.0</uncertaintyWeight>
<uncertaintyWeight imt="SA(1.0)">0.0</uncertaintyWeight>
<uncertaintyWeight imt="SA(2.0)">0.0</uncertaintyWeight>

</logicTreeBranch>
<logicTreeBranch branchID="Campbell1997">

<uncertaintyModel>Campbell1997</uncertaintyModel>
<uncertaintyWeight>0.0</uncertaintyWeight>
<uncertaintyWeight imt="PGA">0.25</uncertaintyWeight>
<uncertaintyWeight imt="SA(0.5)">0.0</uncertaintyWeight>
<uncertaintyWeight imt="SA(1.0)">0.0</uncertaintyWeight>
<uncertaintyWeight imt="SA(2.0)">0.0</uncertaintyWeight>

</logicTreeBranch>
</logicTreeBranchSet>

Clearly the weights for each IMT must sum up to 1, otherwise the engine will complain. Note
that this feature only works for the classical calculators: in the event based case only the default
uncertaintyWeight (i.e. the first in the list of weights, the one without imt attribute) would be
taken for all IMTs.

12.1. GMPE logic trees with weighted IMTs 75

OpenQuake for Advanced Users Documentation, Release 3.18.0

76 Chapter 12. Logic tree sampling strategies

CHAPTER

THIRTEEN

CLASSICAL PSHA

Running large hazard calculations, especially ones with large logic trees, is an art, and there are
various techniques that can be used to reduce an impossible calculation to a feasible one.

13.1 Reducing a calculation

The first thing to do when you have a large calculation is to reduce it so that it can run in a rea-
sonable amount of time. For instance you could reduce the number of sites, by considering a small
geographic portion of the region interested, of by increasing the grid spacing. Once the calculation
has been reduced, you can run it and determine what are the factors dominating the run time.

As we discussed in section about common mistakes, you may want to tweak the quadratic
parameters (maximum_distance, area_source_discretization, rupture_mesh_spacing,
complex_fault_mesh_spacing). Also, you may want to choose different GMPEs, since some
are faster than others. You may want to play with the logic tree, to reduce the number of realizations:
this is especially important, in particular for event based calculation were the number of generated
ground motion fields is linear with the number of realizations.

Once you have tuned the reduced computation, you can have an idea of the time required for the
full calculation. It will be less than linear with the number of sites, so if you reduced your sites
by a factor of 100, the full computation will take a lot less than 100 times the time of the reduced
calculation (fortunately). Still, the full calculation can be impossible because of the memory/data
transfer requirements, especially in the case of event based calculations. Sometimes it is necessary
to reduce your expectations. The examples below will discuss a few concrete cases. But first of all,
we must stress an important point:

Our experience tells us that THE PERFORMANCE BOTTLENECKS OF THE
REDUCED CALCULATION ARE TOTALLY DIFFERENT FROM THE BOTTLENECKS OF
THE FULL CALCULATION. Do not trust your performance intuition.

77

OpenQuake for Advanced Users Documentation, Release 3.18.0

13.2 Classical PSHA for Europe (SHARE)

Suppose you want to run a classical PSHA calculation for the latest model for Europe and that it
turns out to be too slow to run on your infrastructure. Let’s say it takes 4 days to run. How do you
proceed to reduce the computation time?

The first thing that comes to mind is to tune the area_source_discretization parameter, since
the calculation (as most calculations) is dominated by area sources. For instance, by doubling it
(say from 10 km to 20 km) we would expect to reduce the calculation time from 4 days to just 1
day, a definite improvement.

But how do we check if the results are still acceptable? Also, how we check that in less than 4+1=5
days? As we said before we have to reduce the calculation and the engine provides several ways to
do that.

If you want to reduce the number of sites, IMTs and realizations you can:

• manually change the sites.csv or site_model.csv files

• manually change the region_grid_spacing

• manually change the intensity_measure_types_and_levels variable

• manually change the GMPE logic tree file by commenting out branches

• manually change the source logic tree file by commenting out branches

• use the environment variable OQ_SAMPLE_SITES

• use the environment variable OQ_REDUCE

Starting from engine 3.11 the simplest approach is to use the OQ_REDUCE environment vari-
able than not only reduce reduces the number of sites, but also reduces the number of inten-
sity measure types (it takes the first one only) and the number of realizations to just 1 (it sets
number_of_logic_tree_samples=1) and if you are in an event based calculation reduces the
parameter ses_per_logic_tree_path too. For instance the command:

$ OQ_REDUCE=.01 oq engine --run job.ini

will reduce the number of sites by 100 times by random sampling, as well a reducing to 1 the number
of IMTs and realizations. As a result the calculation will be very fast (say 1 hour instead of 4 days)
and it will possible to re-run it multiple times with different parameters. For instance, you can test
the impact of the area source discretization parameter by running:

$ OQ_REDUCE=.01 oq engine --run job.ini --param area_source_
→˓discretization=20

Then the engine provides a command oq compare to compare calculations; for instance:

78 Chapter 13. Classical PSHA

OpenQuake for Advanced Users Documentation, Release 3.18.0

$ oq compare hmaps PGA -2 -1 --atol .01

will compare the hazard maps for PGA for the original (ID=-2, area_source_discretization=10 km)
and the new calculation (ID=-2, area_source_discretization=20 km) on all sites, printing out the
sites where the hazard values are different more than .01 g (--atol means absolute tolerence).
You can use oq compare --help to see what other options are available.

If the call to oq compare gives a result:

There are no differences within the tolerances atol=0.01, rtol=0%, sids=[.
→˓..]

it means that within the specified tolerance the hazard is the same on all the sites, so you can safely
use the area discretization of 20 km. Of course, the complete calculation will contain 100 times
more sites, so it could be that in the complete calculation some sites will have different hazard. But
that’s life. If you want absolute certitude you will need to run the full calculation and to wait. Still,
the reduced calculation is useful, because if you see that are already big differences there, you can
immediately assess that doubling the area_source_discretization parameter is a no go and
you can try other strategies, like for instance doubling the width_of_mfd_bin parameter.

As of version 3.11, the oq compare hmaps command will give an output like the following, in
case of differences:

site_id calc_id 0.5 0.1 0.05 0.02 0.01 0.005
======= ======= ======= ======= ======= ======= ======= =======
767 -2 0.10593 0.28307 0.37808 0.51918 0.63259 0.76299
767 -1 0.10390 0.27636 0.36955 0.50503 0.61676 0.74079
======= ======= ======= ======= ======= ======= ======= =======
===== =========
poe rms-diff
===== =========
0.5 1.871E-04
0.1 4.253E-04
0.05 5.307E-04
0.02 7.410E-04
0.01 8.856E-04
0.005 0.00106
===== =========

This is an example with 6 hazard maps, for poe = .5, .1, .05, .02, .01 and .005 respectively. Here
the only site that shows some discrepancy if the site number 767. If that site is in Greenland where
nobody lives one can decide that the approximation is good anyway ;-) The engine also report the
RMS-differences by considering all the sites, i.e.

rms-diff = sqrt<(hmap1 - hmap2)^2> # mediating on all the sites

As to be expected, the differences are larger for maps with a smaller poe, i.e. a larger return period.

13.2. Classical PSHA for Europe (SHARE) 79

OpenQuake for Advanced Users Documentation, Release 3.18.0

But even in the worst case the RMS difference is only of 1E-3 g, which is not much. The complete
calculation will have more sites, so the RMS difference will likely be even smaller. If you can
check the few outlier sites and convince yourself that they are not important, you have succeeded
in doubling the speed on your computation. And then you can start to work on the other quadratic
and linear parameter and to get an ever bigger speedup!

13.3 Collapsing the GMPE logic tree

Some hazard models have GMPE logic trees which are insanely large. For instance the GMPE
logic tree for the latest European model (ESHM20) contains 961,875 realizations. This causes two
issues:

1. it is impossible to run a calculation with full enumeration, so one must use sampling

2. when one tries to increase the number of samples to study the stability of the mean hazard
curves, the calculation runs out of memory

Fortunately, it is possible to compute the exact mean hazard curves by collapsing the GMPE logic
tree. This is a simple as listing the name of the branchsets in the GMPE logic tree that one wants
to collapse. For instance in the case of ESHM20 model there are the following 6 branchsets:

1. Shallow_Def (19 branches)

2. CratonModel (15 branches)

3. BCHydroSubIF (15 branches)

4. BCHydroSubIS (15 branches)

5. BCHydroSubVrancea (15 branches)

6. Volcanic (1 branch)

By setting in the job.ini the following parameters

number_of_logic_tree_samples = 0
collapse_gsim_logic_tree = Shallow_Def CratonModel BCHydroSubIF␣
→˓BCHydroSubIS BCHydroSubVrancea Volcanic

it is possible to collapse completely the GMPE logic tree, i.e. going from 961,875 realizations to
1. Then the memory issues are solved and one can assess the correct values of the mean hazard
curves. Then it is possible to compare with the value produce with sampling and assess how much
they can be trusted.

NB: the collapse_gsim_logic_tree feature is rather old but only for engine versions >=3.13 it
produces the exact mean curves (using the AvgPoeGMPE); otherwise it will produce a different kind
of collapsing (using the AvgGMPE).

80 Chapter 13. Classical PSHA

CHAPTER

FOURTEEN

PARAMETRIC GMPES

Most of the Ground Motion Prediction Equations (GMPEs) in hazardlib are classes that can be
instantiated without arguments. However, there is now a growing number of exceptions. Here I
will describe some of the parametric GMPEs we have, as well as give some guidance for authors
wanting to implement a parametric GMPE.

14.1 Signature of a GMPE class

The more robust way to define parametric GMPEs is to use a **kwargs signature (robust against
subclassing):

from openquake.hazardlib.gsim.base import GMPE

class MyGMPE(GMPE):
def __init__(self, **kwargs):

super().__init__(**kwargs)
doing some initialization here

The call to super().__init__ will set a self.kwargs attribute and perform a few checks, like
raising a warning if the GMPE is experimental. In absence of parameters self.kwargs is the
empty dictionary, but in general it is non-empty and it can be arbitrarily nested, with only one
limitation: it must be a dictionary of literal Python objects so that it admits a TOML representation.

TOML is a simple format similar to the .ini format but hierarchical (see https://github.com/
toml-lang/toml#user-content-example). It is used by lots of people in the IT world, not only in
Python. The advantage of TOML is that it is a lot more readable than JSON and XML and simpler
than YAML: moreover, it is perfect for serializing into text literal Python objects like dictionaries
and lists. The serialization feature is essential for the engine since the GMPEs are read from the
GMPE logic tree file which is a text file, and because the GMPEs are saved into the datastore as
text, in the dataset full_lt/gsim_lt.

The examples below will clarify how it works.

81

https://github.com/toml-lang/toml#user-content-example
https://github.com/toml-lang/toml#user-content-example

OpenQuake for Advanced Users Documentation, Release 3.18.0

14.2 GMPETable

Historically, the first parametric GMPE was the GMPETable, introduced many years ago to support
the Canada model. The GMPETable class has a single parameter, called gmpe_table, which is a
(relative) pathname to an .hdf5 file with a fixed format, containing a tabular representation of the
GMPE, numeric rather than analytic.

You can find an example of use of GMPETables in the test openquake/qa_tests_data/case_18, which
contains three tables in its logic tree:

<logicTreeBranch branchID="b11">
<uncertaintyModel>

[GMPETable]
gmpe_table = "Wcrust_low_rhypo.hdf5"

</uncertaintyModel>
<uncertaintyWeight>0.16</uncertaintyWeight>

</logicTreeBranch>
<logicTreeBranch branchID="b12">
<uncertaintyModel>

[GMPETable]
gmpe_table = "Wcrust_med_rhypo.hdf5"

</uncertaintyModel>
<uncertaintyWeight>0.68</uncertaintyWeight>

</logicTreeBranch>
<logicTreeBranch branchID="b13">
<uncertaintyModel>

[GMPETable]
gmpe_table = "Wcrust_high_rhypo.hdf5"

</uncertaintyModel>
<uncertaintyWeight>0.16</uncertaintyWeight>

</logicTreeBranch>

As you see, the TOML format is used inside the uncertaintyModel tag; the text:

[GMPETable]
gmpe_table = "Wcrust_low_rhypo.hdf5"

is automatically translated into a dictionary {'GMPETable': {'gmpe_table':
"Wcrust_low_rhypo.hdf5"}} and the .kwargs dictionary passed to the GMPE class is
simply

{'gmpe_table': "Wcrust_low_rhypo.hdf5"}

NB: you may see around old GMPE logic files using a different syntax, without TOML:

82 Chapter 14. Parametric GMPEs

OpenQuake for Advanced Users Documentation, Release 3.18.0

<logicTreeBranch branchID="b11">
<uncertaintyModel gmpe_table="Wcrust_low_rhypo.hdf5">

GMPETable
</uncertaintyModel>
<uncertaintyWeight>0.16</uncertaintyWeight>

</logicTreeBranch>
<logicTreeBranch branchID="b12">
<uncertaintyModel gmpe_table="Wcrust_med_rhypo.hdf5">

GMPETable
</uncertaintyModel>
<uncertaintyWeight>0.68</uncertaintyWeight>

</logicTreeBranch>
<logicTreeBranch branchID="b13">
<uncertaintyModel gmpe_table="Wcrust_high_rhypo.hdf5">

GMPETable
</uncertaintyModel>
<uncertaintyWeight>0.16</uncertaintyWeight>

</logicTreeBranch>

This is a legacy syntax, which is still supported and will likely be supported forever, but we recom-
mend to use the new TOML-based syntax, which is more general. The old syntax has the limitation
of being non-hierarchic, making it impossible to define MultiGMPEs involving parametric GMPEs:
this is why we switched to TOML.

14.3 File-dependent GMPEs

It is possible to define other GMPEs taking one or more filenames as parameters. Everything will
work provided you respect the following rules:

1. there is a naming convention on the file parameters, that must end with the suffix _file or
_table

2. the files must be read at GMPE initialization time (i.e. in the __init__ method)

3. they must be read with the GMPE.open method, NOT with the open builtin;

4. in the gsim logic tree file you must use relative path names

The constraint on the argument names makes it possible for the engine to collect all the files required
by the GMPEs; moreover, since the path names are relative, the oq zip command can work making
it easy to ship runnable calculations. The engine also stores in the datastore a copy of all of the
required input files. Without the copy, it would not be possible from the datastore to reconstruct
the inputs, thus making it impossible to dump and restore calculations from a server to a different
machine.

14.3. File-dependent GMPEs 83

OpenQuake for Advanced Users Documentation, Release 3.18.0

The constraint about reading at initialization time makes it possible for the engine to work on a
cluster. The issue is that GMPEs are instantiated in the controller and used in the worker nodes,
which do not have access to the same filesystem. If the files are read after instantiation, you will get
a file not found error when running on a cluster.

The reason why you cannot use the standard open builtin to read the files is that the engine must
be able to read the GMPE inputs from the datastore copies (think of the case when the calc_XXX.
hdf5 has been copied to a different machine). In order to do that, there is some magic based on the
naming convention. For instance, if your GMPE must read a text file with argument name text_file
you should write the following code:

class GMPEWithTextFile(GMPE):
def __init__(self, **kwargs):

super().__init__(**kwargs)
with self.open(kwargs['text_file']) as myfile: # good

self.text = myfile.read().decode('utf-8')

You should NOT write the following, because it will break the engine, for instance by making it
impossible to export the results of a calculation:

class GMPEWithTextFile(GMPE):
def __init__(self, **kwargs):

super().__init__(**kwargs)
with open(kwargs['text_file']) as myfile: # bad

self.text = myfile.read()

NB: writing

class GMPEWithTextFile(GMPE):
def __init__(self, text_file):

super().__init__(text_file=text_file)
with self.open(text_file) as myfile: # good

self.text = myfile.read().decode('utf-8')

would work but it is discouraged. It is best to keep the **kwargs signature so that the call to
super().__init__(**kwargs) will work out-of-the-box even if in the future subclasses of GM-
PEWithTextFile with different parameters will appear: this is defensive programming.

84 Chapter 14. Parametric GMPEs

OpenQuake for Advanced Users Documentation, Release 3.18.0

14.4 MultiGMPE

Another example of parametric GMPE is the MultiGMPE class. A MultiGMPE is a dictionary of
GMPEs, keyed by Intensity Measure Type. It is useful in geotechnical applications and in general
in any situation where you have GMPEs depending on the IMTs. You can find an example in our
test openquake/qa_tests_data/classical/case_1:

<logicTreeBranch branchID="b1">
<uncertaintyModel>

[MultiGMPE."PGA".AkkarBommer2010]
[MultiGMPE."SA(0.1)".SadighEtAl1997]

</uncertaintyModel>
<uncertaintyWeight>1.0</uncertaintyWeight>

</logicTreeBranch>

Here the engine will use the GMPE AkkarBommer2010 for PGA and SadighEtAl1997 for SA(0.
1). The .kwargs passed to the MultiGMPE class will have the form:

{'PGA': {'AkkarBommer2010': {}},
'SA(0.1)': {'SadighEtAl1997': {}}}

The beauty of the TOML format is that it is hierarchic, so if we wanted to use parametric GMPEs
in a MultiGMPE we could. Here is an example using the GMPETable Wcrust_low_rhypo.hdf5 for
PGA and Wcrust_med_rhypo.hdf5 for SA(0.1) (the example has no physical meaning, it is just an
example):

<logicTreeBranch branchID="b1">
<uncertaintyModel>

[MultiGMPE."PGA".GMPETable]
gmpe_table = "Wcrust_low_rhypo.hdf5"

[MultiGMPE."SA(0.1)".GMPETable]
gmpe_table = "Wcrust_med_rhypo.hdf5"

</uncertaintyModel>
<uncertaintyWeight>1.0</uncertaintyWeight>

</logicTreeBranch>

14.4. MultiGMPE 85

OpenQuake for Advanced Users Documentation, Release 3.18.0

14.5 GenericGmpeAvgSA

In engine 3.4 we introduced a GMPE that manages a range of spectral accelerations and
acts in terms of an average spectral acceleration. You can find an example of use in open-
quake/qa_tests/data/classical/case_34:

<logicTreeBranch branchID="b1">
<uncertaintyModel>

[GenericGmpeAvgSA]
gmpe_name = "BooreAtkinson2008"
avg_periods = [0.5, 1.0, 2.0]
corr_func = "baker_jayaram"

</uncertaintyModel>
<uncertaintyWeight>1.0</uncertaintyWeight>

</logicTreeBranch>

As you see, the format is quite convenient when there are several arguments of different types:
here we have two strings (gmpe_name and corr_func) and a list of floats (avg_periods). The
dictionary passed to the underlying class will be

{'gmpe_name': "BooreAtkinson2008",
'avg_periods': [0.5, 1.0, 2.0],
'corr_func': "baker_jayaram"}

14.6 ModifiableGMPE

In engine 3.10 we introduced a ModifiableGMPE class which is able to modify the behavior of an
underlying GMPE. Here is an example of use in the logic tree file:

<uncertaintyModel>
[ModifiableGMPE]
gmpe.AkkarEtAlRjb2014 = {}
set_between_epsilon.epsilon_tau = 0.5

</uncertaintyModel>

Here set_between_epsilon is simply shifting the mean with the formula mean -> mean + epsilon_tau
* inter_event. In the future ModifiableGMPE will likely grow more methods. If you want to
understand how it works you should look at the source code:

https://github.com/gem/oq-engine/blob/engine-3.18/openquake/hazardlib/gsim/mgmpe/
modifiable_gmpe.py

86 Chapter 14. Parametric GMPEs

https://github.com/gem/oq-engine/blob/engine-3.18/openquake/hazardlib/gsim/mgmpe/modifiable_gmpe.py
https://github.com/gem/oq-engine/blob/engine-3.18/openquake/hazardlib/gsim/mgmpe/modifiable_gmpe.py

CHAPTER

FIFTEEN

MULTIPOINTSOURCES

Starting from version 2.5, the OpenQuake Engine is able to manage MultiPointSources, i.e. col-
lections of point sources with specific properties. A MultiPointSource is determined by a mesh of
points, a MultiMFD magnitude-frequency-distribution and 9 other parameters:

1. tectonic region type

2. rupture mesh spacing

3. magnitude-scaling relationship

4. rupture aspect ratio

5. temporal occurrence model

6. upper seismogenic depth

7. lower seismogenic depth

8. NodalPlaneDistribution

9. HypoDepthDistribution

The MultiMFD magnitude-frequency-distribution is a collection of regular MFD instances (one
per point); in order to instantiate a MultiMFD object you need to pass a string describing the
kind of underlying MFD (‘arbitraryMFD’, ‘incrementalMFD’, ‘truncGutenbergRichterMFD’ or
‘YoungsCoppersmithMFD’), a float determining the magnitude bin width and few arrays describ-
ing the parameters of the underlying MFDs. For instance, in the case of an ‘incrementalMFD’, the
parameters are min_mag and occurRates and a MultiMFD object can be instantiated as follows:

mmfd = MultiMFD('incrementalMFD',
size=2,
bin_width=[2.0, 2.0],
min_mag=[4.5, 4.5],
occurRates=[[.3, .1], [.4, .2, .1]])

In this example there are two points and two underlying MFDs; the occurrence rates can be different
for different MFDs: here the first one has 2 occurrence rates while the second one has 3 occurrence
rates.

87

OpenQuake for Advanced Users Documentation, Release 3.18.0

Having instantiated the MultiMFD, a MultiPointSource can be instantiated as in this example:

npd = PMF([(0.5, NodalPlane(1, 20, 3)),
(0.5, NodalPlane(2, 2, 4))])

hd = PMF([(1, 4)])
mesh = Mesh(numpy.array([0, 1]), numpy.array([0.5, 1]))
tom = PoissonTOM(50.)
rms = 2.0
rar = 1.0
usd = 10
lsd = 20
mps = MultiPointSource('mp1', 'multi point source',

'Active Shallow Crust',
mmfd, rms, PeerMSR(), rar,
tom, usd, lsd, npd, hd, mesh)

There are two major advantages when using MultiPointSources:

1. the space used is a lot less than the space needed for an equivalent set of PointSources (less
memory, less data transfer)

2. the XML serialization of a MultiPointSource is a lot more efficient (say 10 times less disk
space, and faster read/write times)

At computation time MultiPointSources are split into PointSources and are indistinguishable from
those. The serialization is the same as for other source typologies (call write_source_model(fname,
[mps]) or nrml.to_python(fname, sourceconverter)) and in XML a multiPointSource looks like this:

<multiPointSource
id="mp1"
name="multi point source"
tectonicRegion="Stable Continental Crust"
>

<multiPointGeometry>
<gml:posList>

0.0 1.0 0.5 1.0
</gml:posList>
<upperSeismoDepth>

10.0
</upperSeismoDepth>
<lowerSeismoDepth>

20.0
</lowerSeismoDepth>

</multiPointGeometry>
<magScaleRel>

PeerMSR
(continues on next page)

88 Chapter 15. MultiPointSources

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
</magScaleRel>
<ruptAspectRatio>

1.0
</ruptAspectRatio>
<multiMFD
kind="incrementalMFD"
size=2
>

<bin_width>
2.0 2.0

</bin_width>
<min_mag>

4.5 4.5
</min_mag>
<occurRates>

0.10 0.05 0.40 0.20 0.10
</occurRates>
<lengths>

2 3
</lengths>

</multiMFD>
<nodalPlaneDist>

<nodalPlane dip="20.0" probability="0.5" rake="3.0" strike="1.0"/>
<nodalPlane dip="2.0" probability="0.5" rake="4.0" strike="2.0"/>

</nodalPlaneDist>
<hypoDepthDist>

<hypoDepth depth="14.0" probability="1.0"/>
</hypoDepthDist>

</multiPointSource>

The node <lengths> contains the lengths of the occurrence rates, 2 and 3 respectively in this ex-
ample. This is needed since the serializer writes the occurrence rates sequentially (in this example
they are the 5 floats 0.10 0.05 0.40 0.20 0.10) and the information about their grouping would be
lost otherwise.

There is an optimization for the case of homogeneous parameters; for instance in this example the
bin_width and min_mag are the same in all points; then it is possible to store these as one-element
lists:

mmfd = MultiMFD('incrementalMFD',
size=2,
bin_width=[2.0],
min_mag=[4.5],
occurRates=[[.3, .1], [.4, .2, .1]])

89

OpenQuake for Advanced Users Documentation, Release 3.18.0

This saves memory and data transfer, compared to the version of the code above.

Notice that writing bin_width=2.0 or min_mag=4.5 would be an error: the parameters must be
vector objects; if their length is 1 they are treated as homogeneous vectors of size size. If their
length is different from 1 it must be equal to size, otherwise you will get an error at instantiation
time.

90 Chapter 15. MultiPointSources

CHAPTER

SIXTEEN

THE POINT SOURCE GRIDDING APPROXIMATION

WARNING: the point source gridding approximation is used only in classical calculations, not in
event based calculations!

Most hazard calculations are dominated by distributed seismicity, i.e. area sources and multipoint
sources that for the engine are just regular point sources. In such situations the parameter governing
the performance is the grid spacing: a calculation with a grid spacing of 50 km produces 25 times
less ruptures and it is expected to be 25 times faster than a calculation with a grid spacing of 10 km.

The point source gridding approximation is a smart way of raising the grid spacing without losing
too much precision and without losing too much performance.

The idea is two use two kinds of point sources: the original ones and a set of “effective” ones
(instances of the class CollapsedPointSource) that essentially are the original sources averaged
on a larger grid, determined by the parameter ps_grid_spacing.

The plot below should give the idea, the points being the original sources and the squares with ~25
sources each being associated to the collapsed sources:

91

OpenQuake for Advanced Users Documentation, Release 3.18.0

For distant sites it is possible to use the large grid (i.e. the CollapsePointSources) without losing
much precision, while for close points the original sources must be used.

The engine uses the parameter pointsource_distance to determine when to use the original
sources and when to use the collapsed sources.

If the maximum_distance has a value of 500 km and the pointsource_distance a value of 50
km, then (50/500)^2 = 1% of the sites will be close and 99% of the sites will be far. Therefore
you will able to use the collapsed sources for 99% percent of the sites and a huge speedup is to big
expected (in reality things are a bit more complicated, since the engine also consider the fact that
ruptures have a finite size, but you get the idea).

16.1 Application: making the Canada model 26x faster

In order to give a concrete example, I ran the Canada 2015 model on 7 cities by using the following
site_model.csv file:

custom_site_id lon lat vs30 z1pt0 z2pt5
montre -73 45 368 393.6006 1.391181
calgar -114 51 451 290.6857 1.102391
ottawa -75 45 246 492.3983 2.205382
edmont -113 53 372 389.0669 1.374081
toront -79 43 291 465.5151 1.819785
winnip -97 50 229 499.7842 2.393656
vancou -123 49 600 125.8340 0.795259

Notice that we are using a custom_site_id field to identify the cities. This is possible only in
engine versions >= 3.13, where custom_site_id has been extended to accept strings of at most 6
characters, while before only integers were accepted (we could have used a zip code instead).

If no special approximations are used, the calculation is extremely slow, since the model is ex-
tremely large. On the the GEM cluster (320 cores) it takes over 2 hours to process the 7 cities. The
dominating operation, as of engine 3.13, is “computing mean_std” which takes, in total, 925,777
seconds split across the 320 cores, i.e. around 48 minutes per core. This is way too much and
it would make impossible to run the full model with ~138,000 sites. An analysis shows that the
calculation time is totally dominated by the point sources. Moreover, the engine prints a warning
saying that I should use the pointsource_distance approximation. Let’s do so, i.e. let us set

pointsource_distance = 50

in the job.ini file. That alone triples the speed of the engine, and the calculation times in “computing
mean_std” goes down to 324,241 seconds, i.e. 16 minutes per core, in average. An analysis of the
hazard curves shows that there is practically no difference between the original curves and the ones
computed with the approximation on:

92 Chapter 16. The point source gridding approximation

OpenQuake for Advanced Users Documentation, Release 3.18.0

$ oq compare hcurves PGA <first_calc_id> <second_calc_id>
There are no differences within the tolerances atol=0.001, rtol=0%,␣
→˓sids=[0 1 2 3 4 5 6]

However, this is not enough. We are still too slow to run the full model in a reasonable amount of
time. Enters the point source gridding. By setting

ps_grid_spacing=50

we can spectacularly reduce the calculation time to 35,974s, down by nearly an order of magnitude!
This time oq compare hcurves produces some differences on the last city but they are minor and
not affecting the hazard maps:

$ oq compare hmaps PGA <first_calc_id> <third_calc_id>
There are no differences within the tolerances atol=0.001, rtol=0%,␣
→˓sids=[0 1 2 3 4 5 6]

The following table collects the results:

operation calc_time approx speedup
computing mean_std 925_777 no approx 1x
computing mean_std 324_241 pointsource_distance 3x
computing mean_std 35_974 ps_grid_spacing 26x

It should be noticed that if you have 130,000 sites it is likely that there will be a few sites where
the point source gridding approximation gives results quite different for the exact results. The
commands oq compare allows you to figure out which are the problematic sites, where they are
and how big is the difference from the exact results.

You should take into account that even the “exact” results have uncertainties due to all kind of
reasons, so even a large difference can be quite acceptable. In particular if the hazard is very low
you can ignore any difference since it will have no impact on the risk.

Points with low hazard are expected to have large differences, this is why by default oq compare
use an absolute tolerance of 0.001g, but you can raise that to 0.01g or more. You can also give a
relative tolerance of 10% or more. Internally oq compare calls the function numpy.allclose see
https://numpy.org/doc/stable/reference/generated/numpy.allclose.html for a description of how the
tolerances work.

By increasing the pointsource_distance parameter and decreasing the ps_grid_spacing pa-
rameter one can make the approximation as precise as wanted, at the expense of a larger runtime.

NB: the fact that the Canada model with 7 cities can be made 26 times faster does not
mean that the same speedup apply when you consider the full 130,000+ sites. A test with
ps_grid_spacing=pointsource_distance=50 gives a speedup of 7 times, which is still very
significant.

16.1. Application: making the Canada model 26x faster 93

https://numpy.org/doc/stable/reference/generated/numpy.allclose.html

OpenQuake for Advanced Users Documentation, Release 3.18.0

16.2 How to determine the “right” value for the
ps_grid_spacing parameter

The trick is to run a sensitivity analysis on a reduced calculation. Set in the job.ini something like
this:

sensitivity_analysis = {'ps_grid_spacing': [0, 20, 40, 60]}

and then run:

$ OQ_SAMPLE_SITES=.01 oq engine --run job.ini

This will run sequentially 4 calculations with different values of the ps_grid_spacing. The first
calculation, the one with ps_grid_spacing=0, is the exact calculation, with the approximation
disabled, to be used as reference.

Notice that setting the environment variable OQ_SAMPLE_SITES=.01 will reduced by 100x the
number of sites: this is essential in order to make the calculation times acceptable in large calcula-
tions.

After running the 4 calculations you can compare the times by using oq show performance
and the precision by using oq compare. From that you can determine which value of the
ps_grid_spacing gives a good speedup with a decent precision. Calculations with plenty of
nodal planes and hypocenters will benefit from lower values of ps_grid_spacing while calcula-
tions with a single nodal plane and hypocenter for each source will benefit from higher values of
ps_grid_spacing.

If you are interested only in speed and not in precision, you can set
calculation_mode=preclassical, run the sensitivity analysis in parallel very quickly
and then use the ps_grid_spacing value corresponding to the minimum weight of the source
model, which can be read from the logs. Here is the trick to run the calculations in parallel:

$ oq engine --multi --run job.ini -p calculation_mode=preclassical

And here is how to extract the weight information, in the example of Alaska, with job IDs in the
range 31692-31695:

$ oq db get_weight 31692
<Row(description=Alaska{'ps_grid_spacing': 0}, message=tot_weight=1_929_
→˓504, max_weight=120_594, num_sources=150_254)>
$ oq db get_weight 31693
<Row(description=Alaska{'ps_grid_spacing': 20}, message=tot_weight=143_
→˓748, max_weight=8_984, num_sources=22_727)>
$ oq db get_weight 31694
<Row(description=Alaska{'ps_grid_spacing': 40}, message=tot_weight=142_

(continues on next page)

94 Chapter 16. The point source gridding approximation

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
→˓564, max_weight=8_910, num_sources=6_245)>
$ oq db get_weight 31695
<Row(description=Alaska{'ps_grid_spacing': 60}, message=tot_weight=211_
→˓542, max_weight=13_221, num_sources=3_103)>

The lowest weight is 142_564, corresponding to a ps_grid_spacing of 40km; since the weight
is 13.5 times smaller than the weight for the full calculation (1_929_504), this is the maximum
speedup that we can expect from using the approximation.

Note 1: the weighting algorithm changes at every release, so only relative weights at a fixed release
are meaningful and it does not make sense to compare weights across engine releases.

Note 2: the precision and performance of the ps_grid_spacing approximation change at every
release: you should not expect to get the same numbers and performance across releases even if the
model is the same and the parameters are the same.

16.2. How to determine the “right” value for the ps_grid_spacing parameter 95

OpenQuake for Advanced Users Documentation, Release 3.18.0

96 Chapter 16. The point source gridding approximation

CHAPTER

SEVENTEEN

DISAGG_BY_SRC

Given a system of various sources affecting a specific site, one very common question to ask is:
what are the more relevant sources, i.e. which sources contribute the most to the mean hazard
curve? The engine is able to answer such question by setting the disagg_by_src flag in the
job.ini file. When doing that, the engine saves in the datastore a 4-dimensional ArrayWrapper
called mean_rates_by_src with dimensions (site ID, intensity measure type, intensity measure
level, source ID). From that it is possible to extract the contribution of each source to the mean haz-
ard curve (interested people should look at the code in the function check_disagg_by_src). The
ArrayWrapper mean_rates_by_src can also be converted into a pandas DataFrame, then getting
something like the following:

>> dstore['mean_rates_by_src'].to_dframe().set_index('src_id')
site_id imt lvl value

ASCTRAS407 0 PGA 0 9.703749e-02
IF-CFS-GRID03 0 PGA 0 3.720510e-02
ASCTRAS407 0 PGA 1 6.735009e-02
IF-CFS-GRID03 0 PGA 1 2.851081e-02
ASCTRAS407 0 PGA 2 4.546237e-02
...
IF-CFS-GRID03 0 PGA 17 6.830692e-05
ASCTRAS407 0 PGA 18 1.072884e-06
IF-CFS-GRID03 0 PGA 18 1.275539e-05
ASCTRAS407 0 PGA 19 1.192093e-07
IF-CFS-GRID03 0 PGA 19 5.960464e-07

The value field here is the probability of exceedence in the hazard curve. The lvl field is an
integer corresponding to the intensity measure level in the hazard curve.

In engine 3.15 we introduced the so-called “colon convention” on source IDs: if you have many
sources that for some reason should be collected together - for instance because they all account for
seismicity in the same tectonic region, or because they are components of a same source but are
split into separate sources by magnitude - you can tell the engine to collect them into one source
in the mean_rates_by_src matrix. The trick is to use IDs with the same prefix, a colon, and
then a numeric index. For instance, if you had 3 sources with IDs src_mag_6.65, src_mag_6.

97

OpenQuake for Advanced Users Documentation, Release 3.18.0

75, src_mag_6.85, fragments of the same source with different magnitudes, you could change
their IDs to something like src:0, src:1, src:2 and that would reduce the size of the matrix
mean_rates_by_src by 3 times by collecting together the contributions of each source. There
is no restriction on the numeric indices to start from 0, so using the names src:665, src:675,
src:685 would work too and would be clearer: the IDs should be unique, however.

If the IDs are not unique and the engine determines that the underlying sources are different, then
an extension “semicolon + incremental index” is automatically added. This is useful when the
hazard modeler wants to define a model where the more than one version of the same source ap-
pears in one source model, having changed some of the parameters, or when varied versions of a
source appear in each branch of a logic tree. In that case, the modeler should use always the exact
same ID (i.e. without the colon and numeric index): the engine will automatically distinguish the
sources during the calculation of the hazard curves and consider them the same when saving the
array mean_rates_by_src: you can see an example in the test qa_tests_data/classical/
case_20/job_bis.ini in the engine code base. In that case the source_info dataset will list 7
sources CHAR1;0 CHAR1;1 CHAR1;2 COMFLT1;0 COMFLT1;1 SFLT1;0 SFLT1;1 but the ma-
trix mean_rates_by_src will see only three sources CHAR1 COMFLT1 SFLT1 obtained by com-
posing together the versions of the underlying sources.

In version 3.15 mean_rates_by_src was extended to work with mutually exclusive sources, i.e.
for the Japan model. You can see an example in the test qa_tests_data/classical/case_27.
However, the case of mutually exclusive ruptures - an example is the New Madrid cluster in the
USA model - is not supported yet.

In some cases it is tricky to discern whether use of the colon convention or identical source IDs is
appropriate. The following list indicates several possible cases that a user may encounter, and the
appropriate approach to assigning source IDs. Note that this list includes the cases that have been
tested so far, and is not a comprehensive list of all cases that may arise.

1. Sources in the same source group/source model are scaled alternatives of each other. For
example, this occurs when for a given source, epistemic uncertainties such as occurrence rates
or geometries are considered, but the modeller has pre-scaled the rates rather than including
the alternative hypothesis in separate logic tree branches.

Naming approach: identical IDs.

2. Sources in different files are alternatives of each other, e.g. each is used in a different branch
of the source model logic tree.

Naming approach: identical IDs.

3. A source is defined in OQ by numerous sources, either in the same file or different ones. For
example, one could have a set of non-parametric sources, each with many rutpures, that are
grouped together into single files by magnitude. Or, one could have many point sources that
together represent the seismicity from one source.

Naming approach: colon convention

4. One source consists of many mutually exclusive sources, as in qa_tests_data/
classical/case_27.

98 Chapter 17. disagg_by_src

OpenQuake for Advanced Users Documentation, Release 3.18.0

Naming approach: colon convention

Cases 1 and 2 could include include more than one source typology, as in qa_tests_data/
classical/case_79.

NB: disagg_by_src can be set to true only if the ps_grid_spacing approximation is disabled.
The reason is that the ps_grid_spacing approximation builds effective sources which are not in
the original source model, thus breaking the connection between the values of the matrix and the
original sources.

99

OpenQuake for Advanced Users Documentation, Release 3.18.0

100 Chapter 17. disagg_by_src

CHAPTER

EIGHTEEN

THE POST-PROCESSING FRAMEWORK AND
VECTOR-VALUED PSHA CALCULATIONS

Since version 3.17 the OpenQuake engine has special support for custom postprocessors. A post-
processor is a Python module located in the directory openquake/calculators/postproc and
containing a main function with signature:

def main(dstore, [csm], ...):
...

Post-processors are called after a classical or preclassical calculation: the dstore parameter is
a DataStore instance corresponding to the calculation, while the csm parameter is a Composite-
SourceModel instance (it can be omitted if not needed).

The main function is called when the user sets in the job.ini file the parameters postproc_func
and postproc_args. postproc_func is the dotted name of the postprocessing function (in the
form modulename.funcname where funcname is normally main) and postproc_args is a dic-
tionary of literal arguments that get passed to the function; if not specified the empty dictionary
is passed. This happens for istance for the conditional spectrum post-processor since it does not
require additional arguments with respect to the ones in dstore['oqparam'].

The post-processing framework was put in place in order to run VPSHA calculations. The user can
find an example in qa_tests_data/postproc/case_mrd. In the job.ini file there are the lines:

postproc_func = compute_mrd.main
postproc_args = {
'imt1': 'PGA',
'imt2': 'SA(0.05)',
'cross_correlation': 'BakerJayaram2008',
'seed': 42,
'meabins': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
'sigbins': [0.2, 0.3, 0.4, 0.5, 0.6, 0.7],
'method': 'indirect'}

while the postprocessor module openquake.calculators.postproc.compute_mrd contains
the function

101

OpenQuake for Advanced Users Documentation, Release 3.18.0

inside openquake.calculators.postproc.compute_mrd
def main(dstore, imt1, imt2, cross_correlation, seed, meabins, sigbins,

method='indirect'):
...

Inside main there is code to create the dataset mrd which contains the Mean Rate Distribution as
an array of shape L1 x L1 x N where L1 is the number of levels per IMT minus 1 and N the number
of sites (normally 1).

While the postprocessing part for VPSHA calculations is computationally intensive, it is much more
common to have a light postprocessing, i.e. faster than the classical calculation it depends on. In
such situations the postprocessing framework really shines, since it is possible to reuse the original
calculation via the standard --hc switch, i.e. you can avoid repeating multiple times the same clas-
sical calculation if you are interested in running the postprocessor with different parameters. In that
situation the main function will get a DataStore instance with an attribute parent corresponding
to the DataStore of the original calculation.

The postprocessing framework also integrates very well with interactive development (think of
Jupyter notebooks). The following lines are all you need to create a child datastore where the
postprocessing function can store its results after reading the data from the calculation datastore:

>> from openquake.commonlib.datastore import read, build_dstore_log
>> from openquake.calculators.postproc import mypostproc
>> dstore, log = build_dstore_log(parent=read(calc_id))
>> with log:
.. mypostproc.main(dstore)

18.1 The conditional spectrum post-processor

Since version 3.17 the engine includes an experimental post-processor which is able to compute
the conditional spectrum.

The implementation was adapted from the paper Conditional Spectrum Computation Incorporat-
ing Multiple Causal Earthquakes and Ground-Motion Prediction Models by Ting Lin, Stephen C.
Harmsen, Jack W. Baker, and Nicolas Luco (http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.845.163&rep=rep1&type=pdf) and it is rather sophisticated.

In order to perform a conditional spectrum calculation you need to specify, in addition to the usual
parameter of a classical calculation:

1. a reference intensity measure type (i.e. imt_ref = SA(0.2))

2. a cross correlation model (i.e. cross_correlation = BakerJayaram2008)

3. a set of poes (i.e. poes = 0.01 0.1)

102Chapter 18. The post-processing framework and Vector-valued PSHA calculations

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.845.163&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.845.163&rep=rep1&type=pdf

OpenQuake for Advanced Users Documentation, Release 3.18.0

The engine will compute a mean conditional spectrum for each poe and site, as well as the usual
mean uniform hazard spectra. The following restrictions are enforced:

1. the IMTs can only be of type SA and PGA

2. the source model cannot contain mutually exclusive sources (i.e. you cannot compute the
conditional spectrum for the Japan model)

An example can be found in the engine repository, in the directory open-
quake/qa_tests_data/conditional_spectrum/case_1. If you run it, you will get something like
the following:

$ oq engine --run job.ini
...
id | name
261 | Full Report
262 | Hazard Curves
260 | Mean Conditional Spectra
263 | Realizations
264 | Uniform Hazard Spectra

Exporting the output 260 will produce two files conditional-spectrum-0.csv and
conditional-spectrum-1.csv; the first will refer to the first poe, the second to the second
poe. Each file will have a structure like the following:

#,,,,"generated_by='OpenQuake engine 3.13.0-gitd78d717e66', start_date=
→˓'2021-10-13T06:15:20', checksum=3067457643, imls=[0.99999, 0.61470],␣
→˓site_id=0, lon=0.0, lat=0.0"
sa_period,val0,std0,val1,std1
0.00000E+00,1.02252E+00,2.73570E-01,7.53388E-01,2.71038E-01
1.00000E-01,1.99455E+00,3.94498E-01,1.50339E+00,3.91337E-01
2.00000E-01,2.71828E+00,9.37914E-09,1.84910E+00,9.28588E-09
3.00000E-01,1.76504E+00,3.31646E-01,1.21929E+00,3.28540E-01
1.00000E+00,3.08985E-01,5.89767E-01,2.36533E-01,5.86448E-01

The number of columns will depend from the number of sites. The conditional spectrum calculator,
like the disaggregation calculator, is meant to be run on a very small number of sites, normally
one. In this example there are two sites 0 and 1 and the columns val0 and val give the value
of the conditional spectrum on such sites respectively, while the columns std0 and std1 give the
corresponding standard deviations.

Conditional spectra for individual realizations are also computed and stored for debugging pur-
poses, but they are not exportable.

18.1. The conditional spectrum post-processor 103

OpenQuake for Advanced Users Documentation, Release 3.18.0

104Chapter 18. The post-processing framework and Vector-valued PSHA calculations

CHAPTER

NINETEEN

EVENT BASED AND SCENARIOS

Scenario risk calculations usually do not pose a performance problem, since they involve a single
rupture and limited geographical region for analysis. Some event-based risk calculations, how-
ever, may involve millions of ruptures and exposures spanning entire countries or even continents.
This section offers some practical tips for running large event-based risk calculations, especially
ones involving large logic trees, and proposes techniques that might be used to make an otherwise
intractable calculation tractable.

19.1 Understanding the hazard

Event-based calculations are typically dominated by the hazard component (unless there are lots
of assets aggregated on a few hazard sites) and therefore the first thing to do is to estimate the size
of the hazard, i.e. the number of GMFs that will be produced. Since we are talking about a large
calculation, first of all, we need to reduce it to a size that is guaranteed to run quickly. The simplest
way to do that is to reduce the parameters directly affecting the number of ruptures generated, i.e.

• investigation_time

• ses_per_logic_tree_path

• number_of_logic_tree_samples

For instance, if you have ses_per_logic_tree_path = 10,000 reduce it to 10, run the calcu-
lation and you will see in the log something like this:

[2018-12-16 09:09:57,689 #35263 INFO] Received
{'gmfdata': '752.18 MB', 'hcurves': '224 B', 'indices': '29.42 MB'}

The amount of GMFs generated for the reduced calculation is 752.18 MB; and since the calculation
has been reduced by a factor of 1,000, the full computation is likely to generate around 750 GB of
GMFs. Even if you have sufficient disk space to store this large quantity of GMFs, most likely you
will run out of memory. Even if the hazard part of the calculation manages to run to completion, the
risk part of the calculation is very likely to fail — managing 750 GB of GMFs is beyond the current
capabilities of the engine. Thus, you will have to find ways to reduce the size of the computation.

105

OpenQuake for Advanced Users Documentation, Release 3.18.0

A good start would be to carefully set the parameters minimum_magnitude and
minimum_intensity:

• minimum_magnitude is a scalar or a dictionary keyed by tectonic region; the engine will
discard ruptures with magnitudes below the given thresholds

• minimum_intensity is a scalar or a dictionary keyed by the intensity measure type; the
engine will discard GMFs below the given intensity thresholds

Choosing reasonable cutoff thresholds with these parameters can significantly reduce the size of
your computation when there are a large number of small magnitude ruptures or low intensity
GMFs being generated, which may have a negligible impact on the damage or losses, and thus
could be safely discarded.

19.2 region_grid_spacing

In our experience, the most common error made by our users is to compute the hazard at the sites
of the exposure. The issue is that it is possible to have exposures with millions of assets on millions
of distinct hazard sites. Computing the GMFs for millions of sites is hard or even impossible (there
is a limit of 4 billion rows on the size of the GMF table in the datastore). Even in the cases when
computing the hazard is possible, then computing the risk starting from an extremely large amount
of GMFs will likely be impossible, due to memory/runtime constraints.

The second most common error is using an extremely fine grid for the site model. Remember that
if you have a resolution of 250 meters, a square of 250 km x 250 km will contain one million
sites, which is definitely too much. The engine was designed when the site models had resolutions
around 5-10 km, i.e. of the same order of the hazard grid, while nowadays the vs30 fields have a
much larger resolution.

Both problems can be solved in a simple way by specifying the region_grid_spacing parameter.
Make it large enough that the resulting number of sites becomes reasonable and you are done. You
will lose some precision, but that is preferable to not being able to run the calculation. You will
need to run a sensitivity analysis with different values of region_grid_spacing parameter to
make sure that you get consistent results, but that’s it.

Once a region_grid_spacing is specified, the engine computes the convex hull of the expo-
sure sites and builds a grid of hazard sites, associating the site parameters from the closest site in
the site model and discarding sites in the region where there are no assets (i.e. more distant than
region_grid_spacing * sqrt(2)). The precise logic is encoded in the function openquake.
commonlib.readinput.get_sitecol_assetcol, if you want to know the specific implemen-
tation details.

Our recommendation is to use the command oq prepare_site_model to apply such logic before
starting a calculation and thus producing a custom site model file tailored to your exposure (see the
section prepare_site_model).

106 Chapter 19. Event Based and Scenarios

OpenQuake for Advanced Users Documentation, Release 3.18.0

19.3 Collapsing of branches

When one is not interested in the uncertainty around the loss estimates and cares more about the
mean estimates, all of the source model branches can be “collapsed” into one branch. Using the
collapsed source model should yield the same mean hazard or loss estimates as using the full source
model logic tree and then computing the weighted mean of the individual branch results.

Similarly, the GMPE logic tree for each tectonic region can also be “collapsed” into a single branch.
Using a single collapsed GMPE for each TRT should also yield the same mean hazard estimates
as using the full GMPE logic tree and then computing the weighted mean of the individual branch
results. This has become possible through the introduction of AvgGMPE feature in version 3.9.

19.4 Using collect_rlzs=true in the risk calculation

Since version 3.12 the engine recognizes a flag collect_rlzs in the risk configuration file. When
the flag is set to true, then the hazard realizations are collected together when computing the risk
results and considered as one.

Setting collect_rlzs=true is possible only when the weights of the realizations are all equal,
otherwise, the engine raises an error. Collecting the realizations makes the calculation of the av-
erage losses and loss curves much faster and more memory efficient. It is the recommended way
to proceed when you are interested only in mean results. When you have a large exposure and
many realizations (say 5 million assets and 1000 realizations, as it is the case for Chile) setting
collect_rlzs=true can make possible a calculation that otherwise would run out of memory.

Note 1: when using sampling, collect_rlzs is implicitly set to True, so if you want to export
the individual results per realization you must set explicitly collect_rlzs=false.

Note 2: collect_rlzs is not the inverse of the individual_rlzs flag. The collect_rlzs flag
indicates to the engine that it should pool together the hazard realizations into a single collective
bucket that will then be used to approximate the branch-averaged risk metrics directly, without going
through the process of first computing the individual branch results and then getting the weighted
average results from the branch results. Whereas the individual_rlzs flag indicates to the engine
that the user is interested in storing and exporting the hazard (or risk) results for every realization.
Setting individual_rlzs to false means that the engine will store only the statistics (mean and
quantile results) in the datastore.

Note 3: collect_rlzs is completely ignored in the hazard part of the calculation, i.e. it does not
affect at all the computation of the GMFs, only the computation of the risk metrics.

19.3. Collapsing of branches 107

https://github.com/gem/oq-engine/blob/engine-3.9/openquake/qa_tests_data/classical/case_19/gmpe_logic_tree.xml#L26-L40

OpenQuake for Advanced Users Documentation, Release 3.18.0

19.5 Splitting the calculation into subregions

If one is interested in propagating the full uncertainty in the source models or ground motion models
to the hazard or loss estimates, collapsing the logic trees into a single branch to reduce computa-
tional expense is not an option. But before going through the effort of trimming the logic trees,
there is an interim step that must be explored, at least for large regions, like the entire continental
United States. This step is to geographically divide the large region into logical smaller subregions,
such that the contribution to the hazard or losses in one subregion from the other subregions is neg-
ligibly small or even zero. The effective realizations in each of the subregions will then be much
fewer than when trying to cover the entire large region in a single calculation.

19.6 Trimming of the logic-trees or sampling of the
branches

Trimming or sampling may be necessary if the following two conditions hold:

1. You are interested in propagating the full uncertainty to the hazard and loss estimates; only
the mean or quantile results are not sufficient for your analysis requirements, AND

2. The region of interest cannot be logically divided further as described above; the logic-tree
for your chosen region of interest still leads to a very large number of effective realizations.

Sampling is the easier of the two options now. You only need to ensure that you sample a sufficient
number of branches to capture the underlying distribution of the hazard or loss results you are
interested in. The drawback of random sampling is that you may still need to sample hundreds of
branches to capture well the underlying distribution of the results.

Trimming can be much more efficient than sampling, because you pick a few branches such that
the distribution of the hazard or loss results obtained from a full-enumeration of these branches is
nearly the same as the distribution of the hazard or loss results obtained from a full-enumeration of
the entire logic-tree.

19.7 ignore_covs vs ignore_master_seed

The vulnerability functions using continuous distributions (lognormal/beta) to characterize the un-
certainty in the loss ratio, specify the mean loss ratios and the corresponding coefficients of variation
for a set of intensity levels.

There is clearly a performance/memory penalty associated with the propagation of uncertainty in
the vulnerability to losses. You can completely remove it by setting

ignore_covs = true

108 Chapter 19. Event Based and Scenarios

OpenQuake for Advanced Users Documentation, Release 3.18.0

in the job.ini file. Then the engine would compute just the mean loss ratios by ignoring the uncer-
tainty i.e. the coefficients of variation. Since engine 3.12 there is a better solution: setting

ignore_master_seed = true

in the job.ini file. Then the engine will compute the mean loss ratios but also store information
about the uncertainty of the results in the asset loss table, in the column “variance”, by using the
formulae

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = Σ𝑖𝜎
2
𝑖 𝑓𝑜𝑟 𝑎𝑠𝑠𝑒𝑡_𝑐𝑜𝑟𝑟𝑒𝑙 = 0

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = (Σ𝑖𝜎𝑖)
2 𝑓𝑜𝑟 𝑎𝑠𝑠𝑒𝑡_𝑐𝑜𝑟𝑟𝑒𝑙 = 1

in terms of the variance of each asset for the event and intensity level in consideration, extracted
from the asset loss and the coefficients of variation. People interested in the details should look
at the implementation in https://github.com/gem/oq-engine/blob/engine-3.18/openquake/risklib/
scientific.py.

19.7. ignore_covs vs ignore_master_seed 109

https://github.com/gem/oq-engine/blob/engine-3.18/openquake/risklib/scientific.py
https://github.com/gem/oq-engine/blob/engine-3.18/openquake/risklib/scientific.py

OpenQuake for Advanced Users Documentation, Release 3.18.0

110 Chapter 19. Event Based and Scenarios

CHAPTER

TWENTY

THE ASSET LOSS TABLE

When performing an event based risk calculation the engine keeps in memory a table with the losses
for each asset and each event, for each loss type. It is usually impossible to fully store such a table,
because it is extremely large; for instance, for 1 million assets, 1 million events, 2 loss types and
4 bytes per loss ~8 TB of disk space would be required. It is true that many events will produce
zero losses because of the maximum_distance and minimum_intensity parameters, but still, the asset
loss table is prohibitively large and for many years could not be stored. In engine 3.8 we made a
breakthrough: we decided to store a partial asset loss table, obtained by discarding small losses,
by leveraging on the fact that loss curves for long enough return periods are dominated by extreme
events, i.e. there is no point in saving all the small losses.

To that aim, the engine honours a parameter called minimum_asset_loss which determines how
many losses are discarded when storing the asset loss table. The rule is simple: losses below
minimum_asset_loss are discarded. By choosing the threshold properly in an ideal world

1. the vast majority of the losses would be discarded, thus making the asset loss table storable;

2. the loss curves would still be nearly identical to the ones without discarding any loss, except
for small return periods.

It is the job of the user to verify if 1 and 2 are true in the real world. He can assess that by playing with
the minimum_asset_loss in a small calculation, finding a good value for it, and then extending it
to the large calculation. Clearly, it is a matter of compromise: by sacrificing precision it is possible
to reduce enormously the size of the stored asset loss table and to make an impossible calculation
possible.

Starting from engine 3.11 the asset loss table is stored if the user specifies

aggregate_by = id

in the job.ini file. In large calculations it is extremely easy to run out of memory or make the
calculation extremely slow, so we recommend not to store the asset loss table. The functionality
is there for the sole purpose of debugging small calculations, for instance, to see the effect of the
minimum_asset_loss approximation at the asset level.

For large calculations usually one is interested in the aggregate loss table, which contains the losses
per event and per aggregation tag (or multi-tag). For instance, the tag occupancy has the three
values “Residential”, “Industrial” and “Commercial” and by setting

111

OpenQuake for Advanced Users Documentation, Release 3.18.0

aggregate_by = occupancy

the engine will store a pandas DataFrame called risk_by_event with a field agg_id with 4 possi-
ble value: 0 for “Residential”, 1 for “Industrial”, 2 for “Commercial” and 3 for the full aggregation.

NB: if the parameter aggregate_by is not specified, the engine will still compute the aggregate
loss table but then the agg_id field will have a single value of 0 corresponding to the total portfolio
losses.

20.1 The Probable Maximum Loss (PML) and the loss
curves

Given an effective investigation time and a return period, the engine is able to compute a PML
for each aggregation tag. It does so by using the function openquake.risklib.scientific.
losses_by_period which takes as input an array of cumulative losses associated with the aggre-
gation tag, a list of the return periods, and the effective investigation time. If there is a single return
period the function returns the PML; if there are multiple return periods it returns the loss curve.
The two concepts are essentially the same thing, since a loss curve is just an array of PMLs, one
for each return period.

For instance:

>>> from openquake.risklib.scientific import losses_by_period
>>> losses = [3, 2, 3.5, 4, 3, 23, 11, 2, 1, 4, 5, 7, 8, 9, 13, 0]
>>> [PML_500y] = losses_by_period(losses, [500], eff_time=1000)
>>> PML_500y
13.0

computes the Probably Maximum Loss at 500 years for the given losses with an effective investi-
gation time of 1000 years. The algorithm works by ordering the losses (suppose there are E losses,
E > 1) generating E time periods eff_time/E, eff_time/(E-1), ... eff_time/1, and log-
interpolating the loss at the return period. Of course this works only if the condition eff_time/E
< return_period < eff_time is respected.

In this example there are E=16 losses, so the return period must be in the range 62.5 .. 1000 years.
If the return period is too small the PML will be zero

>>> losses_by_period(losses, [50], eff_time=1000)
array([0.])

while if the return period is outside the investigation range, we will refuse the temptation to extrap-
olate and we will return NaN instead:

>>> losses_by_period(losses, [1500], eff_time=1000)
array([nan])

112 Chapter 20. The asset loss table

OpenQuake for Advanced Users Documentation, Release 3.18.0

The rules above are the reason why you will see zeros or NaNs in the loss curves generated by the
engine sometimes, especially when there are too few events (the valid range will be small and some
return periods may slip outside the range).

20.1.1 Aggregate loss curves

In some cases the computation of the PML is particularly simple and you can do it by hand: this
happens when the ratio eff_time/return_period is an integer. Consider for instance a case with
eff_time=10,000 years and return_period=2,000 years; suppose there are the following 10
losses aggregating the commercial and residential buildings of an exposure:

>>> import numpy as np
>>> losses_COM = np.array([123, 0, 400, 0, 1500, 200, 350, 0, 700, 600])
>>> losses_RES = np.array([0, 800, 200, 0, 500, 1200, 250, 600, 300, 150])

The loss curve associate the highest loss to 10,000 years, the second highest to 10,000 / 2 years, the
third highest to 10,000 / 3 years, the fourth highest to 10,000 / 4 years, the fifth highest to 10,000
/ 5 years and so on until the lowest loss is associated to 10,000 / 10 years. Since the return period
is 2,000 = 10,000 / 5 to compute the MPL it is enough to take the fifth loss ordered in descending
order:

>>> MPL_COM = [1500, 700, 600, 400, 350, 200, 123, 0, 0, 0][4] = 350
>>> MPL_RES = [1200, 800, 600, 500, 300, 250, 200, 150, 0, 0][4] = 300

Given this algorithm, it is clear why the MPL cannot be additive, i.e. MPL(COM + RES) !=
MPL(COM) + MPL(RES): doing the sums before or after the ordering of the losses is different. In
this example by taking the fifth loss of the sorted sums

>>> sorted(losses_COM + losses_RES, reverse=True)
[2000, 1400, 1000, 800, 750, 600, 600, 600, 123, 0]

one gets MPL(COM + RES) = 750 which is different from MPL(RES) + MPL(COM) = 350 +
300 = 650.

The engine is able to compute aggregate loss curves correctly, i.e. by doing the sums before the
ordering phase. In order to perform aggregations, you need to set the aggregate_by parameter in
the job.ini by specifying tags over which you wish to perform the aggregation. Your exposure
must contain the specified tags for each asset. We have an example for Nepal in our event based
risk demo. The exposure for this demo contains various tags and in particular a geographic tag
called NAME_1 with values “Mid-Western”, “Far-Western”, “West”, “East”, “Central”, and the
job_eb.ini file defines

aggregate_by = NAME_1

When running the calculation you will see something like this:

20.1. The Probable Maximum Loss (PML) and the loss curves 113

OpenQuake for Advanced Users Documentation, Release 3.18.0

Calculation 1 finished correctly in 17 seconds
id | name
9 | Aggregate Event Losses
1 | Aggregate Loss Curves
2 | Aggregate Loss Curves Statistics
3 | Aggregate Losses
4 | Aggregate Losses Statistics
5 | Average Asset Losses Statistics
11 | Earthquake Ruptures
6 | Events
7 | Full Report
8 | Input Files
10 | Realizations
12 | Total Loss Curves
13 | Total Loss Curves Statistics
14 | Total Losses
15 | Total Losses Statistics

Exporting the Aggregate Loss Curves Statistics output will give you the mean and quantile loss
curves in a format like the following one:

annual_frequency_of_exceedence,return_period,loss_type,loss_value,loss_
→˓ratio
5.00000E-01,2,nonstructural,0.00000E+00,0.00000E+00
5.00000E-01,2,structural,0.00000E+00,0.00000E+00
2.00000E-01,5,nonstructural,0.00000E+00,0.00000E+00
2.00000E-01,5,structural,0.00000E+00,0.00000E+00
1.00000E-01,10,nonstructural,0.00000E+00,0.00000E+00
1.00000E-01,10,structural,0.00000E+00,0.00000E+00
5.00000E-02,20,nonstructural,0.00000E+00,0.00000E+00
5.00000E-02,20,structural,0.00000E+00,0.00000E+00
2.00000E-02,50,nonstructural,0.00000E+00,0.00000E+00
2.00000E-02,50,structural,0.00000E+00,0.00000E+00
1.00000E-02,100,nonstructural,0.00000E+00,0.00000E+00
1.00000E-02,100,structural,0.00000E+00,0.00000E+00
5.00000E-03,200,nonstructural,1.35279E+05,1.26664E-06
5.00000E-03,200,structural,2.36901E+05,9.02027E-03
2.00000E-03,500,nonstructural,1.74918E+06,1.63779E-05
2.00000E-03,500,structural,2.99670E+06,1.14103E-01
1.00000E-03,1000,nonstructural,6.92401E+06,6.48308E-05
1.00000E-03,1000,structural,1.15148E+07,4.38439E-01

If you do not set the aggregate_by parameter you will still be able to compute the total loss curve
(for the entire portfolio of assets), and the total average losses.

114 Chapter 20. The asset loss table

OpenQuake for Advanced Users Documentation, Release 3.18.0

20.2 Aggregating by multiple tags

The engine also supports aggregation by multiple tags. Multiple tags can be indicated as multi-tag
and/or various single-tag aggregations:

aggregate_by = NAME_1, taxonomy

or

aggregate_by = NAME_1; taxonomy

Comma , separated values will generate keys for all the possible combinations of the indicated tag
values, while semicolon ; will generate keys for the single tags.

For instance the second event based risk demo (the file job_eb.ini) has a line

aggregate_by = NAME_1, taxonomy

and it is able to aggregate both on geographic region (NAME_1) and on taxonomy. There are 25
possible combinations, that you can see with the command oq show agg_keys:

$ oq show agg_keys
| NAME_1_ | taxonomy_ | NAME_1 | taxonomy |
+---------+-----------+-------------+----------------------------+
1	1	Mid-Western	Wood
1	2	Mid-Western	Adobe
1	3	Mid-Western	Stone-Masonry
1	4	Mid-Western	Unreinforced-Brick-Masonry
1	5	Mid-Western	Concrete
2	1	Far-Western	Wood
2	2	Far-Western	Adobe
2	3	Far-Western	Stone-Masonry
2	4	Far-Western	Unreinforced-Brick-Masonry
2	5	Far-Western	Concrete
3	1	West	Wood
3	2	West	Adobe
3	3	West	Stone-Masonry
3	4	West	Unreinforced-Brick-Masonry
3	5	West	Concrete
4	1	East	Wood
4	2	East	Adobe
4	3	East	Stone-Masonry
4	4	East	Unreinforced-Brick-Masonry
4	5	East	Concrete
5	1	Central	Wood
5	2	Central	Adobe
5	3	Central	Stone-Masonry

(continues on next page)

20.2. Aggregating by multiple tags 115

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
| 5 | 4 | Central | Unreinforced-Brick-Masonry |
| 5 | 5 | Central | Concrete |

The lines in this table are associated to the generalized aggregation ID, agg_id which is an index
going from 0 (meaning aggregate assets with NAME_1=*Mid-Western* and taxonomy=*Wood*)
to 24 (meaning aggregate assets with NAME_1=*Central* and taxonomy=*Concrete*); moreover
agg_id=25 means full aggregation.

The agg_id field enters in risk_by_event and in outputs like the aggregate losses; for instance:

$ oq show agg_losses-rlzs
| agg_id | rlz | loss_type | value |
+--------+-----+---------------+-------------+
| 0 | 0 | nonstructural | 2_327_008 |
| 0 | 0 | structural | 937_852 |
+--------+-----+---------------+-------------+
| ... + ... + ... + ... +
+--------+-----+---------------+-------------+
| 25 | 1 | nonstructural | 100_199_448 |
| 25 | 1 | structural | 157_885_648 |

The exporter (oq export agg_losses-rlzs) converts back the agg_id to the proper combina-
tion of tags; agg_id=25, i.e. full aggregation, is replaced with the string *total*.

It is possible to see the agg_id field with the command $ oq show agg_id.

By knowing the number of events, the number of aggregation keys and the number of loss types, it
is possible to give an upper limit to the size of risk_by_event. In the demo there are 1703 events,
26 aggregation keys and 2 loss types, so risk_by_event contains at most

1703 * 26 * 2 = 88,556 rows

This is an upper limit, since some combination can produce zero losses and are not stored, especially
if the minimum_asset_loss feature is used. In the case of the demo actually only 20,877 rows are
nonzero:

$ oq show risk_by_event
event_id agg_id loss_id loss variance

...
[20877 rows x 5 columns]

It is also possible to perform the aggregation by various single-tag aggregations, using the ; sepa-
rator instead of ,. For example, a line like

aggregate_by = NAME_1; taxonomy

would produce first the aggregation by geographic region (NAME_1), then by taxonomy. In this

116 Chapter 20. The asset loss table

OpenQuake for Advanced Users Documentation, Release 3.18.0

case, instead of producing 5 x 5 combinations, only 5 + 5 outputs would be obtained.

20.2. Aggregating by multiple tags 117

OpenQuake for Advanced Users Documentation, Release 3.18.0

118 Chapter 20. The asset loss table

CHAPTER

TWENTYONE

RUPTURE SAMPLING: HOW DOES IT WORK?

In this section we explain how the sampling of ruptures in event based calculations works, at least
for the case of Poissonian sources. As an example, consider the following point source:

>>> from openquake.hazardlib import nrml
>>> src = nrml.get('''\
... <pointSource id="1" name="Point Source"
... tectonicRegion="Active Shallow Crust">
... <pointGeometry>
... <gml:Point><gml:pos>179.5 0</gml:pos></gml:Point>
... <upperSeismoDepth>0</upperSeismoDepth>
... <lowerSeismoDepth>10</lowerSeismoDepth>
... </pointGeometry>
... <magScaleRel>WC1994</magScaleRel>
... <ruptAspectRatio>1.5</ruptAspectRatio>
... <truncGutenbergRichterMFD aValue="3" bValue="1" minMag="5" maxMag=
→˓"7"/>
... <nodalPlaneDist>
... <nodalPlane dip="30" probability="1" strike="45" rake="90" />
... </nodalPlaneDist>
... <hypoDepthDist>
... <hypoDepth depth="4" probability="1"/>
... </hypoDepthDist>
... </pointSource>''', investigation_time=1, width_of_mfd_bin=1.0)

The source here is particularly simple, with only one seismogenic depth and one nodal plane. It
generates two ruptures, because with a width_of_mfd_bin of 1 there are only two magnitudes in
the range from 5 to 7:

>>> [(mag1, rate1), (mag2, rate2)] = src.get_annual_occurrence_rates()
>>> mag1
5.5
>>> mag2
6.5

119

OpenQuake for Advanced Users Documentation, Release 3.18.0

The occurrence rates are respectively 0.009 and 0.0009. So, if we set the number of stochastic event
sets to 1,000,000

>>> num_ses = 1_000_000

we would expect the first rupture (the one with magnitude 5.5) to occur around 9,000 times and the
second rupture (the one with magnitude 6.5) to occur around 900 times. Clearly the exact numbers
will depend on the stochastic seed; if we set

>>> np.random.seed(42)

then we will have (for investigation_time = 1)

>>> np.random.poisson(rate1 * num_ses * 1)
8966
>>> np.random.poisson(rate2 * num_ses * 1)
921

These are the number of occurrences of each rupture in the effective investigation time, i.e. the
investigation time multiplied by the number of stochastic event sets and the number of realizations
(here we assumed 1 realization).

The total number of events generated by the source will be

number_of_events = sum(n_occ for each rupture)

i.e. 8,966 + 921 = 9,887, with ~91% of the events associated to the first rupture and ~9% of the
events associated to the second rupture.

Since the details of the seed algorithm can change with updates to the the engine, if you run an
event based calculation with the same parameters with different versions of the engine, you may
not get exactly the same number of events, but something close given a reasonably long effective
investigation time. After running the calculation, inside the datastore, in the ruptures dataset you
will find the two ruptures, their occurrence rates and their integer number of occurrences (n_occ).
If the effective investigation time is large enough then the relation

n_occ ~ occurrence_rate * eff_investigation_time

will hold. If the effective investigation time is not large enough, or the occurrence rate is extremely
small, then you should expect to see larger differences between the expected number of occurrences
and n_occ, as well as a strong seed dependency.

It is important to notice than in order to determine the effective investigation time, the engine takes
into account also the ground motion logic tree and the correct formula to use is

eff_investigation_time = investigation_time * num_ses * num_rlzs

where num_rlzs is the number of realizations in the ground motion logic tree.

Just to be concrete, if you run a calculation with the same parameters as described before, but with

120 Chapter 21. Rupture sampling: how does it work?

OpenQuake for Advanced Users Documentation, Release 3.18.0

two GMPEs instead of one (and number_of_logic_tree_samples = 0), then the total number
of paths admitted by the logic tree will be 2 and you should expect to get about twice the num-
ber of occurrences for each rupture. Users wanting to know the nitty-gritty details should look at
the code, inside hazardlib/source/base.py, in the method src.sample_ruptures(eff_num_ses,
ses_seed).

21.1 The difference between full enumeration and sam-
pling

Users are often confused about the difference between full enumeration and sampling. For this
reason the engine distribution comes with a pedagogical example that considers an extremely sim-
plified situation comprising a single site, a single rupture, and only two GMPEs. You can find the ex-
ample in the engine repository under the directory openquake/qa_tests_data/event_based/case_3.
If you look at the ground motion logic tree file, the two GMPEs are AkkarBommer2010 (with
weight 0.9) and SadighEtAl1997 (with weight 0.1).

The parameters in the job.ini are:

investigation_time = 1
ses_per_logic_tree_path = 5_000
number_of_logic_tree_paths = 0

Since there are 2 realizations, the effective investigation time is 10,000 years. If you run the calcula-
tion, you will generate (at least with version 3.13 of the engine, though the details may change with
the version) 10,121 events, since the occurrence rate of the rupture was chosen to be 1. Roughly half
of the events will be associated with the first GMPE (AkkarBommer2010) and half with the second
GMPE (SadighEtAl1997). Actually, if you look at the test, the precise numbers will be 5,191 and
4,930 events, i.e. 51% and 49% rather than 50% and 50%, but this is expected and by increasing the
investigation time you can get closer to the ideal equipartition. Therefore, even if the AkkarBom-
mer2010 GMPE is assigned a relative weight that is 9 times greater than SadighEtAl1997, this is
not reflected in the simulated event set. It means that when performing a computation (for instance
to compute the mean ground motion field, or the average loss) one has to keep the two realizations
distinct, and only at the end to perform the weighted average.

The situation is the opposite when sampling is used. In order to get the same effective investigation
time of 10,000 years you should change the parameters in the job.ini to:

investigation_time = 1
ses_per_logic_tree_path = 1
number_of_logic_tree_paths = 10_000

Now there are 10,000 realizations, not 2, and they all have the same weight .0001. The number of
events per realization is still roughly constant (around 1) and there are still 10,121 events, however
now the original weights are reflected in the event set. In particular there are 9,130 events associated

21.1. The difference between full enumeration and sampling 121

OpenQuake for Advanced Users Documentation, Release 3.18.0

to the AkkarBommer2010 GMPE and 991 events associated to the SadighEtAl1997 GMPE. There
is no need to keep the realizations separated: since they have all the same weigths, you can trivially
compute average quantities. AkkarBommer2010 will count more than SadighEtAl1997 simply
because there are 9 times more events for it (actually 9130/991 = 9.2, but the rate will tend to 9
when the effective time will tend to infinity).

NB: just to be clear, normally realizations are not in one-to-one correspondence with GMPEs. In
this example, it is true because there is a single tectonic region type. However, usually there are
multiple tectonic region types, and a realization is associated to a tuple of GMPEs.

122 Chapter 21. Rupture sampling: how does it work?

CHAPTER

TWENTYTWO

RUPTURE SAMPLING: HOW TO GET IT WRONG

Rupture samplings is much more complex than one could expect and in many respects surprising.
In the many years of existence of the engine, multiple approached were tried and you can expect
the details of the rupture sampling mechanism to be different nearly at every version of the engine.

Here we will discuss some tricky points that may help you understand why different versions of
the engine may give different results and also why the comparison between the engine and other
software performing rupture sampling is nontrivial.

We will start with the first subtlety, the interaction between sampling and filtering. The short version
is that you should first sample and then filter.

Here is the long version. Consider the following code emulating rupture sampling for poissonian
ruptures:

import numpy

class FakeRupture:
def __init__(self, mag, rate):

self.mag = mag
self.rate = rate

def calc_n_occ(ruptures, eff_time, seed):
rates = numpy.array([rup.rate for rup in ruptures])
return numpy.random.default_rng(seed).poisson(rates * eff_time)

mag_rates = [(5.0, 1e-5), (5.1, 2e-5), (5.2, 1e-5), (5.3, 2e-5),
(5.4, 1e-5), (5.5, 2e-5), (5.6, 1e-5), (5.7, 2e-5)]

fake_ruptures = [FakeRupture(mag, rate) for mag, rate in mag_rates]
eff_time = 50 * 10_000
seed = 42

Running this code will give you the following numbers of occurrence for the 8 ruptures considered:

123

OpenQuake for Advanced Users Documentation, Release 3.18.0

>> calc_n_occ(fake_ruptures, eff_time, seed)
[8 9 6 13 7 6 6 10]

Here we did not consider the fact that engine has a minimum_magnitude feature and it is able to
discard ruptures below the minimum magnitude. But how should it work? The natural approach
to follow, for performance-oriented applications, would be to first discard the low magnitudes and
then perform the sampling. However, that would have effects that would be surprising for most
users. Consider the following two alternative:

def calc_n_occ_after_filtering(ruptures, eff_time, seed, min_mag):
mags = numpy.array([rup.mag for rup in ruptures])
rates = numpy.array([rup.rate for rup in ruptures])
return numpy.random.default_rng(seed).poisson(

rates[mags >= min_mag] * eff_time)

def calc_n_occ_before_filtering(ruptures, eff_time, seed, min_mag):
mags = numpy.array([rup.mag for rup in ruptures])
rates = numpy.array([rup.rate for rup in ruptures])
n_occ = numpy.random.default_rng(seed).poisson(rates * eff_time)
return n_occ[mags >= min_mag]

Most users would expect that removing a little number of ruptures has a little effect; for instance,
if we set min_mag = 5.1 such that only the first rupture is removed from the total 8 ruptures, we
would expect a minor change. However, if we follow the filter-early approach the user would get
completely different occupation numbers:

>> calc_n_occ_after_filtering(fake_ruptures, eff_time, seed, min_mag)
[13 6 9 6 13 7 6]

It is only by using the filter-late approach that the occupation numbers are consistent with the no-
filtering case:

>> calc_n_occ_before_filtering(fake_ruptures, eff_time, seed, min_mag)
[9 6 13 7 6 6 10]

The problem with the filtering is absolutely general and not restricted only to the magnitude filtering:
it is exactly the same also for distance filtering. Suppose you have a maximum_distance of 300
km and than you decide that you want to increase it to 301 km. One would expect this change to
have a minor impact; instead, you may end up sampling a very different set of ruptures.

It is true that average quantities like the hazard curves obtained from the ground motion fields will
converge for long enough effective time, however in practice you are always in situations were

1. you cannot perform the calculation for a long enough effective time since it would be com-
putationally prohibitive

124 Chapter 22. Rupture sampling: how to get it wrong

OpenQuake for Advanced Users Documentation, Release 3.18.0

2. you are interested on quantities which are strongly sensitive to aany change, like the Maximum
Probable Loss at some return period

In such situations changing the site collection (or changing the maximum distance which is akin
to changing the site collection) can change the sampling of the ruptures significantly, at least for
engine versions lower than 3.17.

Users wanting to compare the GMFs or the risk on different site collections should be aware of this
effect; the solution is to first sample the ruptures without setting any site collection (i.e. disabling
the filtering) and then perform the calculation with the site collection starting from the sampled
ruptures.

The problem is discussed also in the section about Risk profiles which discusses why you should
not split the hazard calculation in different countries when running a continental scale calculation.

125

OpenQuake for Advanced Users Documentation, Release 3.18.0

126 Chapter 22. Rupture sampling: how to get it wrong

CHAPTER

TWENTYTHREE

EXTRA TIPS SPECIFIC TO EVENT BASED
CALCULATIONS

Event based calculations differ from classical calculations because they produce visible ruptures,
which can be exported and made accessible to the user. In classical calculations, instead, the under-
lying ruptures only live in memory and are normally not saved in the datastore, nor are exportable.
The limitation is fundamentally a technical one: in the case of an event based calculation only a
small fraction of the ruptures contained in a source are actually generated, so it is possible to store
them. In a classical calculation all ruptures are generated and there are so many millions of them
that it is impractical to save them, unless there are very few sites. For this reason they live in mem-
ory, they are used to produce the hazard curves and immediately discarded right after. The exception
if for the case of few sites, i.e. if the number of sites is less than the parameter max_sites_disagg
which by default is 10.

23.1 Convergency of the GMFs for non-trivial logic trees

In theory, the hazard curves produced by an event based calculation should converge to
the curves produced by an equivalent classical calculation. In practice, if the parameters
number_of_logic_tree_samples and ses_per_logic_tree_path (the product of them is
the relevant one) are not large enough they may be different. The engine is able to compare the
mean hazard curves and to see how well they converge. This is done automatically if the option
mean_hazard_curves = true is set. Here is an example of how to generate and plot the curves
for one of our QA tests (a case with bad convergence was chosen on purpose):

$ oq engine --run event_based/case_7/job.ini
<snip>
WARNING:root:Relative difference with the classical mean curves for␣
→˓IMT=SA(0.1): 51%
WARNING:root:Relative difference with the classical mean curves for␣
→˓IMT=PGA: 49%
<snip>
$ oq plot /tmp/cl/hazard.pik /tmp/hazard.pik --sites=0,1,2

127

OpenQuake for Advanced Users Documentation, Release 3.18.0

The relative difference between the classical and event based curves is computed by computing
the relative difference between each point of the curves for each curve, and by taking the maxi-
mum, at least for probabilities of exceedence larger than 1% (for low values of the probability the
convergency may be bad). For the details I suggest you to look at the code.

128 Chapter 23. Extra tips specific to event based calculations

CHAPTER

TWENTYFOUR

THE CONCEPT OF “MEAN” GROUND MOTION FIELD

The engine has at least three different kinds of mean ground motion field, computed differently and
used in different situations:

1. Mean ground motion field by GMPE, used to reduce disk space and make risk calculations
faster.

2. Mean ground motion field by event, used for debugging/plotting purposes.

3. Single-rupture hazardlib mean ground motion field, used for analysis/plotting purposes.

24.1 Mean ground motion field by GMPE

This is the most useful concept for people doing risk calculations. To be concrete, suppose you
are running a scenario_risk calculation on a region where you have a very fine site model (say
at 1 km resolution) and a sophisticated hazard model (say with 16 different GMPEs): then you
can easily end up with a pretty large calculation. For instance one of our users was doing such a
calculation with an exposure of 1.2 million assets, 50,000+ hazard sites, 5 intensity measure levels
and 1000 simulations, corresponding to 16,000 events given that there are 16 GMPEs. Given that
each ground motion value needs 4 bytes to be stored as a 32 bit float, the math tells us that such
calculation will generate 50000 x 16000 x 5 x 4 ~ 15 GB of data (it could be a but less by using
the minimum_intensity feature, but you get the order of magnitude). This is very little for the
engine that can store such an amount of data in less than 1 minute, but it is a huge amount of data
for a database. If you a (re)insurance company and your workflow requires ingesting the GMFs in a
database to compute the financial losses, that’s a big issue. The engine could compute the hazard in
just an hour, but the risk part could easily take 8 days. This is a no-go for most companies. They have
deadlines and cannot way 8 days to perform a single analysis. At the end they are interested only in
the mean losses, so they would like to have a single effective mean field producing something close
to the mean losses that more correctly would be obtained by considering all 16 realizations. With
a single effective realization the data storage would drop under 1 GB and more significantly the
financial model software would complete the calculation in 12 hours instead of 8 days, something
a lot more reasonable.

129

OpenQuake for Advanced Users Documentation, Release 3.18.0

For this kind of situations hazardlib provides an AvgGMPE class, that allows to replace
a set of GMPEs with a single effective GMPE. More specifically, the method AvgGMPE.
get_means_and_stddevs calls the methods .get_means_and_stddevs on the underlying GM-
PEs and performs a weighted average of the means and a weighted average of the variances using
the usual formulas:

𝜇 = Σ𝑖𝑤𝑖𝜇𝑖

𝜎2 = Σ𝑖𝑤𝑖(𝜎𝑖)
2

where the weights sum up to 1. It is up to the user to check how big is the difference in the risk
between the complete calculation and the mean field calculation. A factor of 2 discrepancies would
not be surprising, but we have also seen situations where there is no difference within the uncertainty
due to the random seed choice.

24.2 Mean ground motion field by event

Using the AvgGMPE trick does not solve the issue of visualizing the ground motion fields, since for
each site there are still 1000 events. A plotting tool has still to download 1 GB of data and then one
has to decide which event to plot. The situation is the same if you are doing a sensitivity analysis,
i.e. you are changing some parameter (it could be a parameter of the underlying rupture, or even the
random seed) and you are studying how the ground motion fields change. It is hard to compare two
sets of data of 1 GB each. Instead, it is a lot easier to define a “mean” ground motion field obtained
by averaging on the events and then compare the mean fields of the two calculations: if they are
very different, it is clear that the calculation is very sensitive to the parameter being studied. Still,
the tool performing the comparison will need to consider 1000 times less data and will be 1000
times faster, also downloding 1000 times less data from the remote server where the calculation has
been performed.

For this kind of analysis the engine provides an internal output avg_gmf that can be plotted with
the command oq plot avg_gmf <calc_id>. It is also possible to compare two calculations with
the command

$ oq compare avg_gmf imt <calc1> <calc2>

Since avg_gmf is meant for internal usage and for debugging it is not exported by default and it
is not visible in the WebUI. It is also not guaranteed to stay the same across engine versions. It is
available starting from version 3.11. It should be noted that, consistently with how the AvgGMPE
works, the avg_gmf output is computed in log space, i.e. it is geometric mean, not the usual mean.
If the distribution was exactly lognormal that would also coincide with the median field.

However, you should remember that in order to reduce the data transfer and to save disk space the
engine discards ground motion values below a certain minimum intensity, determined explicitly by
the user or inferred from the vulnerability functions when performing a risk calculation: there is
no point in considering ground motion values below the minimum in the vulnerability functions,
since they would generate zero losses. Discarding the values below the threshould breaks the log
normal distribution.

130 Chapter 24. The concept of “mean” ground motion field

OpenQuake for Advanced Users Documentation, Release 3.18.0

To be concrete, consider a case with a single site, and single intensity measure type (PGA) and a
minimum_intensity of 0.05g. Suppose there are 1000 simulations and that you have a normal
distribution of the logaritms with 𝜇‘ = −2𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ :sigma`=.5; then the ground motion values
that you could obtain would be as follows:

>>> import numpy
>>> np.random.seed(42) # fix the seed
>>> gmvs = np.random.lognormal(mean=-2.0, sigma=.5, size=1000)

As expected, the variability of the values is rather large, spanning more than one order of magnitude:

>>> numpy.round([gmvs.min(), np.median(gmvs), gmvs.max()], 6)
array([0.026766, 0.137058, 0.929011])

Also mean and standard deviation of the logarithms are very close to the expected values 𝜇‘ =
−2𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ :sigma`=.5:

>>> round(np.log(gmvs).mean(), 6)
-1.990334
>>> round(np.log(gmvs).std(), 6)
0.489363

The geometric mean of the values (i.e. the exponential of the mean of the logarithms) is very close
to the median, as expected for a lognormal distribution:

>>> round(np.exp(np.log(gmvs).mean()), 6)
0.13665

All these properties are broken when the ground motion values are truncated below the
minimum_intensity:

>> gmvs[gmvs < .05] = .05
>> round(np.log(gmvs).mean(), 6)
-1.987608
>> round(np.log(gmvs).std(), 6)
0.4828063
>> round(np.exp(np.log(gmvs).mean()), 6)
0.137023

In this case the difference is minor, but if the number of simulations is small and/or the 𝜎 is large
the mean and standard deviation obtained from the logarithms of the ground motion fields could be
quite different from the expected ones.

Finally, it should be noticed that the geometric mean can be orders of magnitude different from the
usual mean and it is purely a coincidence that in this case they are close (~0.137 vs ~0.155).

24.2. Mean ground motion field by event 131

OpenQuake for Advanced Users Documentation, Release 3.18.0

24.3 Single-rupture estimated median ground motion
field

The mean ground motion field by event discussed above is an a posteriori output: after performing
the calculation, some statistics are performed on the stored ground motion fields. However, in the
case of a single rupture it is possible to estimate the geometric mean and the geometric standard
deviation a priori, using hazardlib and without performing a full calculation. However, there are
some limitations to this approach:

1. it only works when there is a single rupture

2. you have to manage the minimum_intensity manually if you want to compare with a con-
crete engine output

3. it is good for estimates, it gives you the theoretical ground ground motion field but not the
ones concretely generated by the engine fixed a specific seed

It should also be noticed that there is a shortcut to compute the single-rupture hazardlib “mean”
ground motion field without writing any code; just set in your job.ini the following values:

truncation_level = 0
ground_motion_fields = 1

Setting truncation_level = 0 effectively replaces the lognormal distribution with a delta func-
tion, so the generated ground motion fields will be all equal, with the same value for all events: this
is why you can set ground_motion_fields = 1, since you would just waste time and space by
generating multiple copies.

Finally let’s warn again on the term hazardlib “mean” ground motion field: in log space it is truly a
mean, but in terms of the original GMFs it is a geometric mean - which is the same as the median
since the distribution is lognormal - so you can also call this the hazardlib median ground motion
field.

24.4 Case study: GMFs for California

We had an user asking for the GMFs of California on 707,920 hazard sites, using the UCERF mean
model and an investigation time of 100,000 years. Is this feasible or not? Some back of the envelope
calculations suggests that it is unfeasible, but reality can be different.

The relevant parameters are the following:

N = 707,920 hazard sites
E = 10^5 estimated events of magnitude greater then 5.5 in the␣
→˓investigation

(continues on next page)

132 Chapter 24. The concept of “mean” ground motion field

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
time of 100,000 years

B = 1 number of branches in the UCERF logic tree
G = 5 number of GSIMS in the GMPE logic tree
I = 6 number of intensity measure types
S1 = 13 number of bytes used by the engine to store a single GMV

The maximum size of generated GMFs is

N * E * B * G * I * S1 = 25 TB (terabytes)

Storing and sharing 25 TB of data is a big issue, so the problem seems without solution. However,
most of the ground motion values are zero, because there is a maximum distance of 300 km and a
rupture cannot affect all of the sites. So the size of the GMFs should be less than 25 TB. Moreover,
if you want to use such GMFs for a damage analysis, you may want to discard very small shaking
that will not cause any damage to your buildings. The engine has a parameter to discard all GMFs
below a minimum threshold, the minimum_intensity parameter. The higher the threshold, the
smaller the size of the GMFs. By playing with that parameter you can reduce the size of the output
by orders of magnitudes. Terabytes could easily become gigabytes with a well chosen threshold.

In practice, we were able to run the full 707,920 sites by splitting the sites in 70 tiles and by using a
minimum intensity of 0.1 g. This was the limit configuration for our cluster which has 5 machines
with 128 GB of RAM each.

The full calculation was completed in only 4 hours because our calculators are highly optimized.
The total size of the generated HDF5 files was of 400 GB. This is a lot less than 25 TB, but still too
large for sharing purposes.

Another way to reduce the output is to reduce the number of intensity measure types. Currently
in your calculations there are 6 of them (PGA, SA(0.1), SA(0.2), SA(0.5), SA(1.0), SA(2.0)) but
if you restrict yourself to only PGA the computation and the output will become 6 times smaller.
Also, there are 5 GMPEs: if you restrict yourself to 1 GMPE you gain a factor of 5. Similarly, you
can reduce the investigation period from 100,000 year to 10,000 years, thus gaining another order
of magnitude. Also, raising the minimum magnitude reduces the number of events significantly.

But the best approach is to be smart. For instance, we know from experience that if the final goal is
to estimate the total loss for a given exposure, the correct way to do that is to aggregate the exposure
on a smaller number of hazard sites. For instance, instead of the original 707,920 hazard sites we
could aggregate on only ~7,000 hazard sites and we would a calculation which is 100 times faster,
produces 100 times less GMFs and still produces a good estimate for the total loss.

In short, risk calculations for the mean field UCERF model are routines now, in spite of what the
naive expectations could be.

24.4. Case study: GMFs for California 133

OpenQuake for Advanced Users Documentation, Release 3.18.0

134 Chapter 24. The concept of “mean” ground motion field

CHAPTER

TWENTYFIVE

EXTENDED CONSEQUENCES

Scenario damage calculations produce damage distributions, i.e. arrays containing the number of
buildings in each damage state defined in the fragility functions. There is a damage distribution per
each asset, event and loss type, so you can easily produce billions of damage distributions. This is
why the engine provide facilities to compute results based on aggregating the damage distributions,
possibly multiplied by suitable coefficients, i.e. consequences.

For instance, from the probability of being in the collapsed damage state, one may estimate the
number of fatalities, given the right multiplicative coefficient. Another commonly computed conse-
quence is the economic loss; in order to estimated it, one need a different multiplicative coefficient
for each damage state and for each taxonomy. The table of coefficients, a.k.a. the consequence
model, can be represented as a CSV file like the following:

taxonomy conse-
quence

loss_type slight moder-
ate

exten-
sive

com-
plete

CR_LFINF-DUH_H2 losses struc-
tural

0.05 0.25 0.6 1

CR_LFINF-DUH_H4 losses struc-
tural

0.05 0.25 0.6 1

MCF_LWAL-DNO_H3 losses struc-
tural

0.05 0.25 0.6 1

MR_LWAL-DNO_H1 losses struc-
tural

0.05 0.25 0.6 1

MR_LWAL-DNO_H2 losses struc-
tural

0.05 0.25 0.6 1

MUR_LWAL-DNO_H1 losses struc-
tural

0.05 0.25 0.6 1

W-WS_LPB-DNO_H1 losses struc-
tural

0.05 0.25 0.6 1

W-WWD_LWAL-
DNO_H1

losses struc-
tural

0.05 0.25 0.6 1

MR_LWAL-DNO_H3 losses struc-
tural

0.05 0.25 0.6 1

135

OpenQuake for Advanced Users Documentation, Release 3.18.0

The first field in the header is the name of a tag in the exposure; in this case it is the taxonomy but
it could be any other tag — for instance, for volcanic ash-fall consequences, the roof-type might be
more relevant, and for recovery time estimates, the occupancy class might be more relevant.

The consequence framework is meant to be used for generic consequences, not necessarily limited
to earthquakes, because since version 3.6 the engine provides a multi-hazard risk calculator.

The second field of the header, the consequence, is a string identifying the kind of consequence
we are considering. It is important because it is associated to the name of the function to use to
compute the consequence. It is rather easy to write an additional function in case one needed to
support a new kind of consequence. You can show the list of consequences by the version of the
engine that you have installed with the command:

$ oq info consequences # in version 3.12
The following 5 consequences are implemented:
losses
collapsed
injured
fatalities
homeless

The other fields in the header are the loss type and the damage states. For instance the coefficient
0.25 for “moderate” means that the cost to bring a structure in “moderate damage” back to its
undamaged state is 25% of the total replacement value of the asset. The loss type refers to the
fragility model, i.e. structural will mean that the coefficients apply to damage distributions
obtained from the fragility functions defined in the file structural_fragility_model.xml.

25.1 discrete_damage_distribution

Damage distributions are called discrete when the number of buildings in each damage is an integer,
and continuous when the number of buildings in each damage state is a floating point number.
Continuous distributions are a lot more efficient to compute and therefore that is the default behavior
of the engine, at least starting from version 3.13. You can ask the engine to use discrete damage
distribution by setting the flag in the job.ini file

discrete_damage_distribution = true

However, it should be noticed that setting discrete_damage_distribution = true will raise
an error if the exposure contains a floating point number of buildings for some asset. Having a
floating point number of buildings in the exposure is quite common since the “number” field is
often estimated as an average.

Even if the exposure contains only integers and you have set discrete_damage_distribution
= true in the job.ini, the aggregate damage distributions will normally contains floating point
numbers, since they are obtained by summing integer distributions for all seismic events of a given
hazard realization and dividing by the number of events of that realization.

136 Chapter 25. Extended consequences

OpenQuake for Advanced Users Documentation, Release 3.18.0

By summing the number of buildings in each damage state one will get the total number of build-
ings for the given aggregation level; if the exposure contains integer numbers than the sum of the
numbers will be an integer, apart from minor differences due to numeric errors, since the engine
stores even discrete distributions as floating point numbers.

25.2 The EventBasedDamage demo

Given a source model, a logic tree, an exposure, a set of fragility functions and a set of conse-
quence functions, the event_based_damage calculator is able to compute results such as average
consequences and average consequence curves. The scenario_damage calculator does the same,
except it does not start from a source model and a logic tree, but rather from a set of predeter-
mined ruptures or ground motion fields, and the averages are performed on the input parameter
number_of_ground_motion_fields and not on the effective investigation time.

In the engine distribution, in the folders demos/risk/EventBasedDamage and demos/risk/
ScenarioDamage there are examples of how to use the calculators.

Let’s start with the EventBasedDamage demo. The source model, the exposure and the fragility
functions are much simplified and you should not consider them realistic for the Nepal, but they
permit very fast hazard and risk calculations. The effective investigation time is

eff_time = 1 (year) x 1000 (ses) x 50 (rlzs) = 50,000 years

and the calculation is using sampling of the logic tree. Since all the realizations have the same
weight, on the risk side we can effectively consider all of them together. This is why there will be a
single output (for the effective risk realization) and not 50 outputs (one for each hazard realization)
as it would happen for an event_based_risk calculation.

Normally the engine does not store the damage distributions for each asset (unless you specify
aggregate_by=id in the job.ini file).

By default it stores the aggregate damage distributions by summing on all the assets in the expo-
sure. If you are interested only in partial sums, i.e. in aggregating only the distributions associated
to a certain tag combination, you can produce the partial sums by specifying the tags. For in-
stance aggregate_by = taxonomy will aggregate by taxonomy, aggregate_by = taxonomy,
region will aggregate by taxonomy and region, etc. The aggregated damage distributions (and
aggregated consequences, if any) will be stored in a table called risk_by_event which can be
accessed with pandas. The corresponding DataFrame will have fields event_id, agg_id (integer
referring to which kind of aggregation you are considering), loss_id (integer referring to the loss
type in consideration), a column named dmg_X for each damage state and a column for each conse-
quence. In the EventBasedDamage demo the exposure has a field called NAME_1 and representing
a geographic region in Nepal (i.e. “East” or “Mid-Western”) and there is an aggregate_by =
NAME_1, taxonomy in the job.ini.

Since the demo has 4 taxonomies (“Wood”, “Adobe”, “Stone-Masonry”, “Unreinforced-Brick-
Masonry”) there 4 x 2 = 8 possible aggregations; actually, there is also a 9th possibility corre-

25.2. The EventBasedDamage demo 137

OpenQuake for Advanced Users Documentation, Release 3.18.0

sponding to aggregating on all assets by disregarding the tags. You can see the possible values of
the the agg_id field with the following command:

$ oq show agg_id
taxonomy NAME_1

agg_id
0 Wood East
1 Wood Mid-Western
2 Adobe East
3 Adobe Mid-Western
4 Stone-Masonry East
5 Stone-Masonry Mid-Western
6 Unreinforced-Brick-Masonry East
7 Unreinforced-Brick-Masonry Mid-Western
8 *total* *total*

Armed with that knowledge it is pretty easy to understand the risk_by_event table:

>> from openquake.commonlib.datastore import read
>> dstore = read(-1) # the latest calculation
>> df = dstore.read_df('risk_by_event', 'event_id')

agg_id loss_id dmg_1 dmg_2 dmg_3 dmg_4 losses
event_id
472 0 0 0.0 1.0 0.0 0.0 5260.828125
472 8 0 0.0 1.0 0.0 0.0 5260.828125
477 0 0 2.0 0.0 1.0 0.0 6368.788574
477 8 0 2.0 0.0 1.0 0.0 6368.788574
478 0 0 3.0 1.0 1.0 0.0 5453.355469
...
30687 8 0 56.0 53.0 26.0 16.0 634266.187500
30688 0 0 3.0 6.0 1.0 0.0 14515.125000
30688 8 0 3.0 6.0 1.0 0.0 14515.125000
30690 0 0 2.0 0.0 1.0 0.0 5709.204102
30690 8 0 2.0 0.0 1.0 0.0 5709.204102
[8066 rows x 7 columns]

The number of buildings in each damage state is integer (even if stored as a float) because the expo-
sure contains only integers and the job.ini is setting explicitly discrete_damage_distribution
= true.

It should be noted that while there is a CSV exporter for the risk_by_event table, it is designed
to export only the total aggregation component (i.e. agg_id=9 in this example) for reasons of
backward compatibility with the past, the time when the only aggregation the engine could perform
was the total aggregation. Since the risk_by_event table can be rather large, it is recommmended
to interact with it with pandas and not to export in CSV.

138 Chapter 25. Extended consequences

OpenQuake for Advanced Users Documentation, Release 3.18.0

There is instead a CSV exporter for the aggregated damage distributions (together with the aggre-
gated consequences) that you may call with the command oq export aggrisk; you can also see
the distributions directly:

$ oq show aggrisk
agg_id rlz_id loss_id dmg_0 dmg_1 dmg_2 dmg_3 ␣

→˓dmg_4 losses
0 0 0 0 18.841061 0.077873 0.052915 0.018116 0.
→˓010036 459.162567
1 3 0 0 172.107361 0.329445 0.591998 0.422925 0.
→˓548271 11213.121094
2 5 0 0 1.981786 0.003877 0.005539 0.004203 0.
→˓004594 104.431755
3 6 0 0 797.826111 1.593724 1.680134 0.926167 0.
→˓973836 23901.496094
4 7 0 0 48.648529 0.120687 0.122120 0.060278 0.
→˓048386 1420.059448
5 8 0 0 1039.404907 2.125607 2.452706 1.431690 1.
→˓585123 37098.269531

By summing on the damage states one gets the total number of buildings for each aggregation level:

agg_id dmg_0 + dmg_1 + dmg_2 + dmg_3 + dmg_4 aggkeys
0 19.000039 ~ 19 Wood,East
3 173.999639 ~ 174 Wood,Mid-Western
5 2.000004 ~ 2 Stone-Masonry,Mid-Western
6 802.999853 ~ 803 Unreinforced-Brick-Masonry,
→˓East
7 48.999971 ~ 49 Unreinforced-Brick-Masonry,
→˓Mid-Western
8 1046.995130 ~ 1047 Total

25.3 The ScenarioDamage demo

The demo in demos/risk/ScenarioDamage is similar to the EventBasedDemo (it still refers to
Nepal) but it uses a much large exposure with 9063 assets and 5,365,761 building. Moreover the
configuration file is split in two: first you should run job_hazard.ini and then run job_risk.
ini with the --hc option.

The first calculation will produce 2 sets of 100 ground motion fields each (since job_hazard.ini
contains number_of_ground_motion_fields = 100 and the gsim logic tree file contains two
GMPEs). The second calculation will use such GMFs to compute aggregated damage distribu-
tions. Contrarily to event based damage calculations, scenario damage calculations normally use

25.3. The ScenarioDamage demo 139

OpenQuake for Advanced Users Documentation, Release 3.18.0

full enumeration, since there are very few realizations (only two in this example), thus the scenario
damage calculator is able to distinguish the results by realization.

The main output of a scenario_damage calculation is still the risk_by_event table which has
exactly the same form as for the EventBasedDamage demo. However there is a difference when
considering the aggrisk output: since we are using full enumeration we will produce a damage
distribution for each realization:

$ oq show aggrisk
agg_id rlz_id loss_id dmg_0 ... dmg_4 losses

0 0 0 0 4173405.75 ... 452433.40625 7.779261e+09
1 0 1 0 3596234.00 ... 633638.37500 1.123458e+10

The sum over the damage states will still produce the total number of buildings, which will be
independent from the realization:

rlz_id dmg_0 + dmg_1 + dmg_2 + dmg_3 + dmg_4
0 5365761.0
1 5365761.0

In this demo there is no aggregate_by specified, so the only aggregation which is performed is
the total aggregation. You are invited to specify aggregate_by and study how aggrisk changes.

25.4 Taxonomy mapping

In an ideal world, for every building type represented in the exposure model, there would be a unique
matching function in the vulnerability or fragility models. However, often it may not be possible
to have a one-to-one mapping of the taxonomy strings in the exposure and those in the vulnera-
bility or fragility models. For cases where the exposure model has richer detail, many taxonomy
strings in the exposure would need to be mapped onto a single vulnerability or fragility function.
In other cases where building classes in the exposure are more generic and the fragility or vulnera-
bility functions are available for more specific building types, a modeller may wish to assign more
than one vulnerability or fragility function to the same building type in the exposure with different
weights.

We may encode such information into a taxonomy_mapping.csv file like the following:

taxonomy conversion
Wood Type A Wood
Wood Type B Wood
Wood Type C Wood

Using an external file is convenient, because we can avoid changing the original exposure. If in the
future we will be able to get specific risk functions, then we will just remove the taxonomy mapping.

140 Chapter 25. Extended consequences

OpenQuake for Advanced Users Documentation, Release 3.18.0

This usage of the taxonomy mapping (use proxies for missing risk functions) is pretty useful, but
there is also another usage which is even more interesting.

Consider a situation where there are doubts about the precise composition of the exposure. For
instance we may know than in a given geographic region 20% of the building of type “Wood”
are of “Wood Type A”, 30% of “Wood Type B” and 50% of “Wood Type C”, corresponding to
different risk functions, but do not know building per building what it its precise taxonomy, so we
just use a generic “Wood” taxonomy in the exposure. We may encode the weight information into
a taxonomy_mapping.csv file like the following:

taxonomy conversion weight
Wood Wood Type A 0.2
Wood Wood Type B 0.3
Wood Wood Type C 0.5

The engine will read this mapping file and when performing the risk calculation will use all three
kinds of risk functions to compute a single result with a weighted mean algorithm. The sums of
the weights must be 1 for each exposure taxonomy, otherwise the engine will raise an error. In this
case the taxonomy mapping file works like a risk logic tree.

Internally both the first usage and the second usage are treated in the same way, since the first usage
is a special case of the second when all the weights are equal to 1.

25.4. Taxonomy mapping 141

OpenQuake for Advanced Users Documentation, Release 3.18.0

142 Chapter 25. Extended consequences

CHAPTER

TWENTYSIX

CORRELATION OF GROUND MOTION FIELDS

There are multiple different kind of correlation on the engine, so it is extremely easy to get confused.
Here I will list all possibilities, in historical order.

1. Spatial correlation of ground motion fields has been a feature of the engine from day one.
The available models are JB2009 and HM2018.

2. Cross correlation in ShakeMaps has been available for a few years. The model used there is
hard-coded an the user cannot change it, only disable it. The models list below (3. and 4.)
have no effect on ShakeMaps.

3. Since version 3.13 the engine provides the BakerJayaram2008 cross correlation model, how-
ever at the moment it is used only in the conditional spectrum calculator.

4. Since version 3.13 the engine provides the GodaAtkinson2009 cross correlation model and
the FullCrossCorrelation model which can be used in scenario and event based calculations.

Earthquake theory tells us that ground motion fields depend on two different lognormal distributions
with parameters (𝜇, 𝜏) and (𝜇, 𝜑) respectively, which are determined by the GMPE (Ground Motion
Prediction Equal). Given a rupture, a set of M intensity measure types and a collection of N sites, the
parameters 𝜇, 𝜏 and 𝜑 are arrays of shape (M, N). 𝜇 is the mean of the logarithms and 𝜏 the between-
event standard deviation, associated to the cross correlation, while 𝜑 is the within-event standard
deviation, associated to the spatial correlation. math:tau and 𝜑 are normally N-independent, i.e.
each array of shape (M, N) actually contains N copies of the same M values read from the coefficient
table of the GMPE.

In the OpenQuake engine each rupture has associated a random seed generated from the parameter
ses_seed given in the job.ini file, therefore given a fixed number E of events it is possible to gener-
ate a deterministic distribution of ground motion fields, i.e. an array of shape (M, N, E). Technically
such feature is implemented in the class openquake.hazardlib.calc.gmf.GmfComputer. The
algorithm used there is to generate two arrays of normally distributed numbers called 𝜖𝜏 (of shape
(M, E)) and 𝜖𝜑 (of shape (M, N, E)), one using the between-event standard deviation 𝜏 and the other
using the within-event standard deviation 𝜑, while keeping the same mean 𝜇. Then the ground
motion fields are generated as an array of shape (M, N, E) with the formula

𝑔𝑚𝑓 = 𝑒𝑥𝑝(𝜇+ 𝑐𝑟𝑜𝑠𝑠𝑐𝑜𝑟𝑟𝑒𝑙(𝜖𝜏) + 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑐𝑜𝑟𝑟𝑒𝑙(𝜖𝜑))

143

OpenQuake for Advanced Users Documentation, Release 3.18.0

The details depend on the form of the cross correlation model and of the spatial correlation model
and you have to study the source code if you really want to understand how it works, in partic-
ular how the correlation matrices are extracted from the correlation models. By default, if no
cross correlation nor spatial correlation are specified, then there are no correlation matrices and
𝑐𝑟𝑜𝑠𝑠𝑐𝑜𝑟𝑟𝑒𝑙(𝜖𝜏) and 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑐𝑜𝑟𝑟𝑒𝑙(𝜖𝜑) are computed by using scipy.stats.truncnorm. Other-
wise scipy.stats.multivariate_normalwith a correlation matrix of shape (M, M) is used for
cross correlation and scipy.stats.multivariate_normal distribution with a matrix of shape
(N, N) is used for spatial correlation. Notice that the truncation feature is lost if you use correla-
tion, since scipy does not offer at truncated multivariate_normal distribution. Not truncating the
normal distribution can easily generated non-physical fields, but even if the truncation is on it is
very possible to generate exceedingly large ground motion fields, so the user has to be very careful.

Correlation is important because its presence normally causes the risk to increase, i.e. ignoring the
correlation will under-estimate the risk. The best way to play with the correlation is to consider
a scenario_risk calculation with a single rupture and to change the cross and spatial correlation
models. Possibilities are to specify in the job.ini all possible combinations of

cross_correlation = FullCrossCorrelation cross_correlation = GodaAtkinson2009
ground_motion_correlation_model = JB2009 ground_motion_correlation_model = HM2018

including removing one or the other or all correlations.

144 Chapter 26. Correlation of Ground Motion Fields

CHAPTER

TWENTYSEVEN

SCENARIOS FROM SHAKEMAPS

Beginning with version 3.1, the engine is able to perform scenario_risk and scenario_damage cal-
culations starting from the GeoJSON feed for ShakeMaps provided by the United States Geological
Survey (USGS). Furthermore, starting from version 3.12 it is possible to use ShakeMaps from other
sources like the local filesystem or a custom URL.

27.1 Running the Calculation

In order to enable this functionality one has to prepare a parent calculation containing the exposure
and risk functions for the region of interest, say Peru. To that aim the user will need to write a
prepare_job.ini file like this one:

[general]
description = Peru - Preloading exposure and vulnerability
calculation_mode = scenario
exposure_file = exposure_model.xml
structural_vulnerability_file = structural_vulnerability_model.xml

By running the calculation

$ oq engine --run prepare_job.ini

The exposure and the risk functions will be imported in the datastore.

This example only includes vulnerability functions for the loss type structural, but one could
also have in this preparatory job file the functions for nonstructural components and contents, and
occupants, or fragility functions if damage calculations are of interest.

It is essential that each fragility/vulnerability function in the risk model should be conditioned
on one of the intensity measure types that are supported by the ShakeMap service – MMI, PGV,
PGA, SA(0.3), SA(1.0), and SA(3.0). If your fragility/vulnerability functions involves an intensity
measure type which is not supported by the ShakeMap system (for instance SA(0.6)) the calculation
will terminate with an error.

145

https://earthquake.usgs.gov/data/shakemap/

OpenQuake for Advanced Users Documentation, Release 3.18.0

Let’s suppose that the calculation ID of this ‘pre’ calculation is 1000. We can now run the risk
calculation starting from a ShakeMap. For that, one need a job.ini file like the following:

[general]
description = Peru - 2007 M8.0 Pisco earthquake losses
calculation_mode = scenario_risk
number_of_ground_motion_fields = 10
truncation_level = 3
shakemap_id = usp000fjta
spatial_correlation = yes
cross_correlation = yes

This example refers to the 2007 Mw8.0 Pisco earthquake in Peru (see https://earthquake.usgs.gov/
earthquakes/eventpage/usp000fjta#shakemap). The risk can be computed by running the risk job
file against the prepared calculation:

$ oq engine --run job.ini --hc 1000

Starting from version 3.12 it is also possible to specify the following sources instead of a
shakemap_id:

(1) from local files:
shakemap_uri = {

"kind": "usgs_xml",
"grid_url": "relative/path/file.xml",
"uncertainty_url": "relative/path/file.xml"
}

(2) from remote files:
shakemap_uri = {

"kind": "usgs_xml",
"grid_url": "https://url.to/grid.xml",
"uncertainty_url": "https://url.to/uncertainty.zip"
}

(3) both files in a single archive
containing grid.xml, uncertainty.xml:
shakemap_uri = {

"kind": "usgs_xml",
"grid_url": "relative/path/grid.zip"
}

While it is also possible to define absolute paths, it is advised not to do so since using absolute paths
will make your calculation not portable across different machines.

The files must be valid .xml USGS ShakeMaps (1). One or both files can also be passed as .zip

146 Chapter 27. Scenarios from ShakeMaps

https://earthquake.usgs.gov/earthquakes/eventpage/usp000fjta#shakemap
https://earthquake.usgs.gov/earthquakes/eventpage/usp000fjta#shakemap

OpenQuake for Advanced Users Documentation, Release 3.18.0

archives containing a single valid xml ShakeMap (2). If both files are in the same .zip, the archived
files must be named grid.xml and uncertainty.xml.

Also starting from version 3.12 it is possible to use ESRI Shapefiles in the same manner as
ShakeMaps. Polygons define areas with the same intensity levels and assets/sites will be asso-
ciated to a polygon if contained by the latter. Sites outside of a polygon will be discarded. Shapefile
inputs can be specified similar to ShakeMaps:

shakemap_uri = {
"kind": "shapefile",
"fname": "path_to/file.shp"

}

It is only necessary to specify one of the available files, and the rest of the files will be expected to
be in the same location. It is also possible to have them contained together in a *.zip file. There
are at least a *.shp-main file and a *.dbf -dBASE file required. The record field names, intensity
measure types and units all need to be the same as with regular USGS ShakeMaps.

Irrespective of the input, the engine will perform the following operations:

1. download the ShakeMap and convert it into a format suitable for further processing, i.e. a
ShakeMaps array with lon, lat fields

2. the ShakeMap array will be associated to the hazard sites in the region covered by the
ShakeMap

3. by using the parameters truncation_level and number_of_ground_motion_fields a
set of ground motion fields (GMFs) following the truncated Gaussian distribution will be
generated and stored in the datastore

4. a regular risk calculation will be performed by using such GMFs and the assets within the
region covered by the shakemap.

27.2 Correlation

By default the engine tries to compute both the spatial correlation and the cross correlation between
different intensity measure types. Please note that if you are using MMI as intensity measure type
in your vulnerability model, it is not possible to apply correlations since those are based on physical
measures.

For each kind of correlation you have three choices, that you can set in the job.ini, for a total of nine
combinations:

- spatial_correlation = yes, cross_correlation = yes # the default
- spatial_correlation = no, cross_correlation = no # disable everything
- spatial_correlation = yes, cross_correlation = no

(continues on next page)

27.2. Correlation 147

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
- spatial_correlation = no, cross_correlation = yes
- spatial_correlation = full, cross_correlation = full
- spatial_correlation = yes, cross_correlation = full
- spatial_correlation = no, cross_correlation = full
- spatial_correlation = full, cross_correlation = no
- spatial_correlation = full, cross_correlation = yes

yes means using the correlation matrix of the Silva-Horspool paper; no mean using no correlation;
full means using an all-ones correlation matrix.

Apart from performance considerations, disabling either the spatial correlation or the cross correla-
tion (or both) might be useful to see how significant the effect of the correlation is on the damage/loss
estimates.

In particular, due to numeric errors, the spatial correlation matrix - that by construction contains
only positive numbers - can still produce small negative eigenvalues (of the order of -1E-15) and
the calculation fails with an error message saying that the correlation matrix is not positive defined.
Welcome to the world of floating point approximation! Rather than magically discarding negative
eigenvalues the engine raises an error and the user has two choices: either disable the spatial cor-
relation or reduce the number of sites because that can make the numerical instability go away.
The easiest way to reduce the number of sites is setting a region_grid_spacing parameter in the
prepare_job.ini file, then the engine will automatically put the assets on a grid. The larger the grid
spacing, the fewer the number of points, and the closer the calculation will be to tractability.

27.3 Performance Considerations

The performance of the calculation will be crucially determined by the number of hazard sites. For
instance, in the case of the Pisco earthquake the ShakeMap has 506,142 sites, which is a significantly
large number of sites. However, the extent of the ShakeMap in longitude and latitude is about 6
degrees, with a step of 10 km the grid contains around 65 x 65 sites; most of the sites are without
assets because most of the grid is on the sea or on high mountains, so actually there are around ~500
effective sites. Computing a correlation matrix of size 500 x 500 is feasible, so the risk computation
can be performed.

Clearly in situations in which the number of hazard sites is too large, approximations will have to be
made such as using a larger region_grid_spacing. Disabling spatial AND cross correlation makes
it possible run much larger calculations. The performance can be further increased by not using a
truncation_level.

When applying correlation, a soft cap on the size of the calculations is defined. This is done and
modifiable through the parameter cholesky_limit which refers to the number of sites multiplied
by the number of intensity measure types used in the vulnerability model. Raising that limit is at
your own peril, as you might run out of memory during calculation or may encounter instabilities
in the calculations as described above.

148 Chapter 27. Scenarios from ShakeMaps

https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.3154

OpenQuake for Advanced Users Documentation, Release 3.18.0

If the ground motion values or the standard deviations are particularly large, the user will get a
warning about suspicious GMFs.

Moreover, especially for old ShakeMaps, the USGS can provide them in a format that the engine
cannot read.

Thus, this feature is not expected to work in all cases.

27.3. Performance Considerations 149

OpenQuake for Advanced Users Documentation, Release 3.18.0

150 Chapter 27. Scenarios from ShakeMaps

CHAPTER

TWENTYEIGHT

REINSURANCE CALCULATIONS

Starting from engine 3.16 reinsurance loss estimates for traditional property contracts are available
for event-based and scenario risk calculations.

The current implementation considers multiple layers of both proportional and non-proportional
treaties.

Proportional treaties (Pro-Rata)

• Quota Share

• Surplus

• Facultative

NOTE: proportional treaties may have a parameter “max_cession_event” limiting the total losses
per event that can be ceded to the reinsurer. The excess of loss generated by events that exceed the
maximum cession per event (overspill losses) is going back to the insurer.

Non-proportional treaties

• Working excess of loss per risk, WXL/R (wxlr). The unit of loss under this treaty is the
“risk”. The engine aggregates the losses per “risk” at the policy level, which can include
single or multiple assets.

• Catastrophic excess of loss per event, CatXL (catxl). The unit of loss under this treaty is
the “event”.

• When combined with proportional treaties, the non-proportional layers are applied over the
net loss retention coming from the proportional layers; first the wxlr are estimated, and then
the successive layers of CatXL are applied over the net loss retention

NOTE: The CatXL is applied over the net loss retention per event coming from the proportional
layers and therefore it includes the overspill losses.

Reinsurance calculations provide, in addition to the ground up losses, the losses allocated to dif-
ferent treaties during a single event or during multiple events over a given time window. Outputs
include average losses and aggregated loss curves at policy and portfolio level for the retention and
cession under the different treaties.

151

OpenQuake for Advanced Users Documentation, Release 3.18.0

28.1 Input files

To run reinsurance calculations, in addition to the required files for performing event-based or sce-
nario risk calculations, it is required to adjust the exposure information, and to include two addi-
tional files:

1. Reinsurance information: an .xml file defining the characteristics of the reinsurance treaties
(e.g., “reinsurance.xml”).

2. Policy information: a .csv file with details of each policy indicated in the exposure model
and the associated reinsurance treaties (e.g., “policy.csv”).

The insurance information includes the allocation of assets into a given policy, the liability and
the deductible. The deductible can be defined at asset level (therefore indicated in the exposure
model csv file), or in at the policy level (therefore indicated in the policy csv file). The current
implementation only supports liability at policy level.

28.1.1 Exposure file

The exposure input file (csv and xml with metadata) needs to be adjusted to include a policy tag
that indicates the type of policy (and therefore the reinsurance contracts) associated with each asset.

Policies can be defined for single or multiple assets. When multiple assets are allocated to the
same policy, losses are aggregated at the policy level before applying the insurance and reinsurance
deductions.

Below we present an example of an exposure model considering the policy information and its
associated metadata:

exposure_model.csv

152 Chapter 28. Reinsurance calculations

OpenQuake for Advanced Users Documentation, Release 3.18.0

id lon lat tax-
on-
omy

num-
ber

struc-
tural

con-
tents

non-
struc-
tural

busi-
ness_interruption

night tag_1pol-
icy

a1 -
122

38.113tax1 1 10000 5000 15000 2000 6 zone_1p1_a1

a2 -
122.114

38.113tax1 1 10000 5000 15000 2000 6 zone_1p1_a2

a3 -
122.57

38.113tax1 1 10000 5000 15000 2000 6 zone_1p1_a3

a4 -
122

38 tax1 1 10000 5000 15000 2000 6 zone_2p2

a5 -
122

37.91 tax1 1 10000 5000 15000 2000 6 zone_2p2

a6 -
122

38.225tax1 1 10000 5000 15000 2000 6 zone_2p2

a7 -
121.886

38.113tax1 1 10000 5000 15000 2000 6 zone_2p2

exposure.xml

<?xml version="1.0" encoding="UTF-8"?>
<nrml xmlns="http://openquake.org/xmlns/nrml/0.4">
<exposureModel id="ex1" category="buildings" taxonomySource="GEM␣

→˓taxonomy">
<description>exposure model</description>
<conversions>
<costTypes>
<costType name="structural" type="aggregated" unit="USD"/>
<costType name="nonstructural" type="aggregated" unit="USD"/>
<costType name="contents" type="aggregated" unit="USD"/>

</costTypes>
</conversions>
<tagNames>tag_1 policy</tagNames>
<occupancyPeriods>night </occupancyPeriods>
<assets>

exposure_model.csv
</assets>

</exposureModel>
</nrml>

This example presents 7 assets (a1 to a7) with 4 associated policies. Notice that the column policy
is mandatory, as well as the line <tagNames>policy</tagNames> in the xml. Additional tags can
be included as needed.

28.1. Input files 153

OpenQuake for Advanced Users Documentation, Release 3.18.0

Starting from OpenQuake 3.17, the exposure module can also include deductibles at asset level
(called ideductible). In this case, the deductions are applied at asset level, and later aggregated
at the policy level before applying the liability and reinsurance allocations.

NOTE: It is not possible to have a policy with ``ideductible`` at asset and ``deductible`` at policy
level. The engine only accepts one value.

28.1.2 Insurance and reinsurance information (reinsurance.xml)

The insurance and reinsurance information is defined by a reinsurance.xml that includes the
metadata and treaty characteristics for each treaty specified in the policy information.

The following example facilitates the understanding of the input file:

<?xml version="1.0" encoding="UTF-8"?>
<nrml xmlns="http://openquake.org/xmlns/nrml/0.5"

xmlns:gml="http://www.opengis.net/gml">
<reinsuranceModel>
<description>reinsurance model</description>

<fieldMap>
<field oq="liability" input="Limit" />
<field oq="deductible" input="Deductible" />

<field input="treaty_1" type="prop" max_cession_event="400" />
<field input="treaty_2" type="prop" max_cession_event="400" />
<field input="xlr1" type="wxlr" deductible="200" limit="1000" />

</fieldMap>
<policies>policy.csv</policies>
</reinsuranceModel>

</nrml>

reinsurance.xml parameters:

The reinsurance information must include, at least, a <description> and a list of files that con-
tain the <policies>. The <fieldMap> block is used to define the reinsurance treaties and their
parameters.

The oq and input parameters are used to specify the key used in the engine (oq) and its equivalent
column header in the policy file (input). All reinsurance calculations must include, at least, the
insurance characteristics of each policy: liability and deductible (that can be at asset or policy level,
depending on the portfolio characteristics). Then, the definition of reinsurance treaties depends on
the treaty type: proportional or non proportional.

Proportional treaties are identified by the parameter type="prop". The fraction of losses ceded
to each treaty is specified for each policy covered by the treaty, and the retention is calculated as 1

154 Chapter 28. Reinsurance calculations

OpenQuake for Advanced Users Documentation, Release 3.18.0

minus all the fractions specified in the multiple layers of proportional treaties. For each proportional
treaty it is possible to define the max_cession_event. The most common types of proportional
treaties are “Quota Share” and “Surplus”.

Non-proportional treaties are identified by the parameter type="wxlr" or type="catxl". For
each treaty it is required to indicate the deductible and limit.

Note: treaties must be written in a given order, keeping proportional ones first, then non-
proportional ones of type “wxlr” and finally those of type “catxl”.

• insurance deductible: the amount (economic value) that the insurer will “deduct” from the
ground up losses before paying up to its policy limits. The units of the deductible must be
compatible with the units indicated in the exposure model (e.g. USD dollars or Euros). The
deductible can be specified at policy (deductible) or asset level (ideductible) depending
on the insurance contract.

The claim is calculated as claim = ground_up_loss - deductible for policies with
deductibles defined at the policy level, or claim = ground_up_loss - ideductible for
policies with deductibles defined at the asset level.

• insurance liability: the maximum economic amount that can be covered by the insurance,
according to the policy characteristics. The liability is also known as limit or maximum
coverage.

• type: parameter that specifies the type of treaty. There are three supported types: prop (for
proportional treaties), wxlr, or catxl.

• max_cession_event: the maximum cession per event is an optional parameter for propor-
tional reinsurance treaties. It refers to the maximum cession accepted by the reinsurance
company for the aggregated losses produced by a single event. If the aggregated losses ex-
ceed this threshold, then the cession in excess is reported as an overspill.

• reinsurance deductible: only applicable to non-proportional treaties, the maximum reten-
tion (also known as “first loss”) is the limit above which the reinsurer becomes liable for
losses up to the upper limit of cover.

• reinsurance limit: in non-proportional treaties it refers to the upper limit of cover or ceiling.
The reinsurance_cover is the amount between the deductible (deductible) and the upper
limit of cover.

Note: the current engine implementation does not support an “annual aggregate limit” for non-
proportional reinsurance treaties.

28.1. Input files 155

OpenQuake for Advanced Users Documentation, Release 3.18.0

28.1.3 Policy information (policy.csv)

The policy input file indicates, for each policy, the insurance values (deductible and liability), as
well as the reinsurance contracts associated with each policy present in the exposure model.

For proportional treaties, the values indicated in each columns refer to the fraction of cession under
the reinsurance treaty. On the other hand, for non-proportional treaties, the values are indicates
as 1 for policies covered within the treaty and zero when they are not part of the treaty.

The table below presents an example of the four policies indicated in the example of the exposure
model and the reinsurance presented above:

policy.csv

policy Limit Deductible treaty_1 treaty_2 xlr1
p1_a1 2000 400 0.1 0.2 1
p1_a2 1000 200 0.3 0.1 1
p1_a3 1000 100 0 0.7 1
p2 2000 500 0 .4 1

The policy column must contain the same identifiers as the ones specified by the policy field in
the exposure model.

In this example the Limit corresponds to the liability of each policy, while the Deductible
refers to the deductible in the engine. Both columns indicate the absolute values using the same
units as the exposed values in the exposure model. There are two proportional reinsurance treaties
(namely treaty_1 and treaty_2), and the values indicated in each column represent the fraction
of cession under each treaty. For example, for “p1_a1” the “treaty_1” ceeds 0.1 of the losses and
there is a cession of 0.2 under the “treaty_2”; therefore the retention corresponding to the propor-
tional treaties for “p1_a1” will be (1 - 0.1 - 0.2 = 0.7). In the case of non-proportional treaties,
“p1_a1” is allocated to the xlr1 (an excess of loss per risk) treaty. This policy is not covered by
the catxl treaties.

Note: treaties must be written in a given order, keeping proportional ones first, then non-
proportional ones of type “wxlr” and finally those of type “catxl”.

28.1.4 Configuration file job.ini

Reinsurance losses can be calculated for event-based and scenario risk calculations. To do so, the
configuration file, job.in, needs to specify the parameters presented below, in addition to the
parameters generally indicated for these type of calculations:

[risk_calculation]
aggregate_by = policy

(continues on next page)

156 Chapter 28. Reinsurance calculations

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
reinsurance_file = {'structural+contents': 'reinsurance.xml'}
total_losses = structural+contents

Additional comments:

• aggregate_by: it is possible to define multiple aggregation keys (see Aggregating by multi-
ple tags). However, for reinsurance calculations the policy key must be present, otherwise
an error message will be raised. In the following example, multiple aggregation keys are
used:

aggregate_by = policy; tag1

In this case, aggregated loss curves will be produced also for tag1 and policy, while rein-
surance outputs will only be produced for the policy.

• reinsurance_file: This dictionary associates the reinsurance information to a given the
loss_type (the engine supports structural, nonstructural, contents or its sum). The insurance
and reinsurance calculations are applied over the indicated loss_types, i.e. to the sum of the
ground up losses associated with the specified loss_types.

NOTE: The current implementation works only with a single reinsurance file.

• total_losses: (or total exposed value) needs to be specified when the reinsurance needs
to be applied over the sum of two or more loss types (e.g. structural+contents). The
definition of total losses is also reflected in the risk outputs of the calculation. NB: if there
is a single loss type (e.g. structural) there is no need to specify this parameter, just write
reinsurance_file = {'structural': 'reinsurance.xml'}

28.2 Output files

The reinsurance calculations generates estimates of retention and cession under the different rein-
surance treaties. The following output files are produced:

1. Reinsurance by event: aggregated estimated per event for the claim, retention, cession
and overspills under each reinsurance treaty.

event_id reten-
tion

claim treaty_1 treaty_2 xlr1 over-
spill_treaty_2

year

0 738.429 1833.73 142.206 400.000 553.096 180.819 1
1 319.755 701.219 51.7092 179.292 150.463 0.00000 1
2 1226.97 3210.91 282.622 400.000 1301.32 474.357 1
3 1318.88 3600.81 294.502 400.000 1587.42 629.187 1

28.2. Output files 157

OpenQuake for Advanced Users Documentation, Release 3.18.0

2. Reinsurance curves: reinsurance loss exceedance curves describe the probabilities of ex-
ceeding a set of loss ratios or loss values, within a given time span (or investigation interval).
The curves are generated for the claim, retention, cession and overspills under each reinsur-
ance treaty.

rlz_id re-
turn_period

reten-
tion

claim treaty_1 treaty_2 xlr1 over-
spill_treaty_2

0 50.0000 319.755 701.219 51.7092 179.292 150.463 0.00000
0 100.000 1226.97 3210.91 282.622 400.000 1301.32 474.357
0 200.000 1318.88 3600.81 294.502 400.000 1587.42 629.187

3. Average reinsurance losses: the average reinsurance losses indicates the expected
value within the time period specified by risk_investigation_time for the claim, retention,
and cessions under each reinsurance treaty for all policies in the Exposure Model.

rlz_id retention claim treaty_1 treaty_2 xlr1 over-
spill_treaty_2

0 1.80202E+014.67333E+013.85520E+006.89646E+001.79615E+016.42181E+00

4. Aggregated reinsurance by policy: the average reinsurance losses for each policy, by
ignoring the overspill logic.

rlz_id policy_id retention claim treaty_1 treaty_2 xlr1
0 p1_a1 4.61304 19.0934 1.90934 3.81867 8.75232
0 p1_a2 3.01643 6.48621 1.94586 0.648621 0.875298
0 p1_a3 38.9468 1.29823 0.00000 0.908759 0.00000
0 p2 3.57945 19.8555 0.00000 7.94221 8.33388

The parameters indicated in the previous outputs include:

• policy: identifier of the unique policies indicated in the exposure model and policy files.

• claim: ground up losses minus the deductible and up to the policy liability.

• retention: net losses that the insurance company keeps for its own account.

• cession_i: net losses that are ceded by the insurance company to the reinsurer(s) under
treaty i. The cession is indicated by the treaty name defined in the reinsurance information.

• overspill_treaty_i: net losses that exceed the maximum cession per event
(“max_cession_event”) for proportional and/or catxl treaties.

NOTE: The sum of the claim is not equal to the ground up losses, since usually the deductible is

158 Chapter 28. Reinsurance calculations

OpenQuake for Advanced Users Documentation, Release 3.18.0

nonzero. Moreover there could be “non-insured” losses corresponding to policies with no insur-
ance contracts or that exceed the policy liability.

28.2. Output files 159

OpenQuake for Advanced Users Documentation, Release 3.18.0

160 Chapter 28. Reinsurance calculations

CHAPTER

TWENTYNINE

HOW THE HAZARD SITES ARE DETERMINED

There are several ways to specify the hazard sites in an engine calculation.

1. The user can specify the sites directly in the job.ini using the sites parameter (e.g. sites
= -122.4194 37.7749, -118.2437 34.0522, -117.1611 32.7157). This method is
perhaps most useful when the analysis is limited to a handful of sites.

2. Otherwise the user can specify the list of sites in a CSV file (i.e. sites_csv = sites.csv).

3. Otherwise the user can specify a grid via the region and region_grid_spacing parame-
ters.

4. Otherwise the sites can be inferred from the exposure, if any, in two different ways:

1. if region_grid_spacing is specified, a grid is implicitly generated from the convex
hull of the exposure and used

2. otherwise the locations of the assets are used as hazard sites

5. Otherwise the sites can be inferred from the site model file, if any.

It must be noted that the engine rounds longitudes and latitudes to 5 decimal places (or approxi-
mately 1 meter spatial resolution), so sites that differ only at the 6th decimal place or beyond will
end up being considered as duplicated sites by the engine, and this will be flagged as an error.

Having determined the sites, a SiteCollection object is generated by associating the closest
parameters from the site model (if any) or using the global site parameters, if any. If the site model
is specified, but the closest site parameters are too distant from the sites, a warning is logged for
each site.

It is possible to specify both sites.csv and site_model.csv: in that case the sites in sites.csv
are used, with parameters inferred from the closest site model parameters.

There are a number of error situations:

1. If both site model and global site parameters are missing, the engine raises an error.

2. If both site model and global site parameters are specified, the engine raises an error.

3. Specifying both the sites.csv and a grid is an error.

161

OpenQuake for Advanced Users Documentation, Release 3.18.0

4. Having duplicates (i.e. rows with identical lon, lat up to 5 digits) in the site model is an error.

If you want to compute the hazard on the locations specified by the site model and not on the expo-
sure locations, you can split the calculation in two files: job_haz.ini containing the site model and
job_risk.ini containing the exposure. Then the risk calculator will find the closest hazard to each
asset and use it. However, if the closest hazard is more distant than the asset_hazard_distance
parameter (default 15 km) an error is raised.

162 Chapter 29. How the hazard sites are determined

CHAPTER

THIRTY

RISK PROFILES

The OpenQuake engine can produce risk profiles, i.e. estimates of average losses and maximum
probable losses for all countries in the world. Even if you are interested in a single country, you can
still use this feature to compute risk profiles for each province in your country.

However, the calculation of the risk profiles is tricky and there are actually several different ways
to do it.

1. The least-recommended way is to run independent calculations, one for each country. The is-
sue with this approach is that even if the hazard model is the same for all the countries (say you
are interested in the 13 countries of South America), due to the nature of event based calcula-
tions, different ruptures will be sampled in different countries. In practice, when comparing
Chile with Peru you will see differences due to the fact that the random sampling picked
different ruptures in the two contries and not real differences. In theory, the effect should
disappear if the calculations have sufficiently long investigation times, when all possible rup-
tures are sampled, but in practice, for finite investigation times there will always be different
ruptures.

2. To avoid such issues, the country-specific calculations should ideally all start from the
same set of precomputed ruptures. You can compute the whole stochastic event set by
running an event based calculation without specifying the sites and with the parameter
ground_motion_fields set to false. Currently, one must specify a few global site parame-
ters in the precalculation to make the engine checker happy, but they will not be used since the
ground motion fields will not be generated in the precalculation. The ground motion fields
will be generated on-the-fly in the subsequent individual country calculations, but not stored
in the file system. This approach is fine if you do not have a lot of disk space at your disposal,
but it is still inefficient since it is quite prone to the slow tasks issue.

3. If you have plenty of disk space it is better to also generate the ground motion fields in the
precalculation, and then run the contry-specific risk calculations starting from there. This is
particularly convenient if you foresee the need to run the risk part of the calculations multiple
times, while the hazard part remains unchanged. Using a precomputed set of GMFs removes
the need to rerun the hazard part of the calculations each time. This workflow has been
particularly optimized since version 3.16 of the engine and it is now quite efficient.

4. If you have a really powerful machine, the simplest is to run a single calculation consid-

163

OpenQuake for Advanced Users Documentation, Release 3.18.0

ering all countries in a single job.ini file. The risk profiles can be obtained by using the
aggregate_by and reaggregate_by parameters. This approach can be much faster than
the previous ones. However, approaches #2 and #3 are cloud-friendly and can be preferred if
you have access to cloud-computing resources, since then you can spawn a different machine
for each country and parallelize horizontally.

Here are some tips on how to prepare the required job.ini files:

When using approach #1 you will have 13 different files (in the example of South America) with a
format like the following:

$ cat job_Argentina.ini
calculation_mode = event_based_risk
source_model_logic_tree_file = ssmLT.xml
gsim_logic_tree_file = gmmLTrisk.xml
site_model_file = Site_model_Argentina.csv
exposure_file = Exposure_Argentina.xml
...
$ cat job_Bolivia.ini
calculation_mode = event_based_risk
source_model_logic_tree_file = ssmLT.xml
gsim_logic_tree_file = gmmLTrisk.xml
site_model_file = Site_model_Bolivia.csv
exposure_file = Exposure_Bolivia.xml
...

Notice that the source_model_logic_tree_file and gsim_logic_tree_file will be the
same for all countries since the hazard model is the same; the same sources will be read 13 times
and the ruptures will be sampled and filtered 13 times. This is inefficient. Also, hazard parameters
like

truncation_level = 3
investigation_time = 1
number_of_logic_tree_samples = 1000
ses_per_logic_tree_path = 100
maximum_distance = 300

must be the same in all 13 files to ensure the consistency of the calculation. Ensuring this consis-
tency can be prone to human error.

When using approach #2 you will have 14 different files: 13 files for the individual countries and a
special file for precomputing the ruptures:

$ cat job_rup.ini
calculation_mode = event_based
source_model_logic_tree_file = ssmLT.xml

(continues on next page)

164 Chapter 30. Risk profiles

OpenQuake for Advanced Users Documentation, Release 3.18.0

(continued from previous page)
gsim_logic_tree_file = gmmLTrisk.xml
reference_vs30_value = 760
reference_depth_to_1pt0km_per_sec = 440
ground_motion_fields = false
...

The files for the individual countries will be as before, except for the parameter
source_model_logic_tree_file which should be removed. That will avoid reading 13
times the same source model files, which are useless anyway, since the calculation now starts from
precomputed ruptures. There are still a lot of repetitions in the files and the potential for making
mistakes.

Approach #3 is very similar to approach #2: the only differences will be in the initial file, the
one used to precompute the GMFs. Obviously it will require setting ground_motion_fields =
true; moreover, it will require specifying the full site model as follows:

site_model_file =
Site_model_Argentina.csv
Site_model_Bolivia.csv
...

The engine will automatically concatenate the site model files for all 13 countries and produce a
single site collection. The site parameters will be extracted from such files, so the dummy global
parameters reference_vs30_value, reference_depth_to_1pt0km_per_sec, etc can be re-
moved.

It is FUNDAMENTAL FOR PERFORMANCE to have reasonable site model files, i.e. you should
not compute the hazard at the location of every single asset, but rather you should use a variable-size
grid fitting the exposure.

The engine provides a command oq prepare_site_model which is meant to generate sensible
site model files starting from the country exposures and the global USGS vs30 grid. It works
by using a hazard grid so that the number of sites can be reduced to a manageable number.
Please refer to the manual in the section about the oq commands to see how to use it, or try oq
prepare_site_model --help.

For reference, we were able to compute the hazard for all of South America on a grid of half million
sites and 1 million years of effective time in a few hours in a machine with 120 cores, generating
half terabyte of GMFs. The difficult part is avoiding running out memory when running the risk
calculation; huge progress in this direction was made in version 3.16 of the engine.

Approach #4 is the best, when applicable, since there is only a single file, thus avoiding entirely the
possibily of having inconsistent parameters in different files. It is also the faster approach, not to
mention the most convenient one, since you have to manage a single calculation and not 13. That
makes the task of managing any kind of post-processing a lot simpler. Unfortunately, it is also the
option that requires more memory and it can be infeasable if the model is too large and you do not

165

OpenQuake for Advanced Users Documentation, Release 3.18.0

have enough computing resources. In that case your best bet might be to go back to options #2 or
#3. If you have access to multiple small machines, approaches #2 and #3 can be more attractive
than #4, since then you can scale horizontally. If you decide to use approach #4, in the single file
you must specify the site_model_file as done in approach #3, and also the exposure_file as
follows:

exposure_file =
Exposure_Argentina.xml
Exposure_Bolivia.xml
...

The engine will automatically build a single asset collection for the entire continent of South Amer-
ica. In order to use this approach, you need to collect all the vulnerability functions in a single file
and the taxonomy mapping file must cover the entire exposure for all countries. Moreover, the ex-
posure must contain the associations between asset<->country; in GEM’s exposure models, this is
typically encoded in a field called ID_0. Then the aggregation by country can be done with the
option

aggregate_by = ID_0

Sometimes, one is interested in finer aggregations, for instance by country and also by occupancy
(Residential, Industrial or Commercial); then you have to set

aggregate_by = ID_0, OCCUPANCY
reaggregate_by = ID_0

reaggregate_by` is a new feature of engine 3.13 which allows to go from
a finer aggregation (i.e. one with more tags, in this example 2) to
a coarser aggregation (i.e. one with fewer tags, in this example 1).
Actually the command ``oq reaggregate has been there for more than one year; the
new feature is that it is automatically called at the end of a calculation, by spawning a subcalcula-
tion to compute the reaggregation. Without reaggregate_by the aggregation by country would
be lost, since only the result of the finer aggregation would be stored.

30.1 Single-line commands

When using approach #1 your can run all of the required calculations with the command:

$ oq engine --run job_Argentina.csv job_Bolivia.csv ...

When using approach #2 your can run all of the required calculations with the command:

$ oq engine --run job_rup.ini job_Argentina.csv job_Bolivia.csv ...

166 Chapter 30. Risk profiles

OpenQuake for Advanced Users Documentation, Release 3.18.0

When using approach #3 your can run all of the required calculations with the command:

$ oq engine --run job_gmf.ini job_Argentina.csv job_Bolivia.csv ...

When using approach #4 your can run all of the required calculations with the command:

$ oq engine --run job_all.ini

Here job_XXX.ini are the country specific configuration files, job_rup.ini is the file generating
the ruptures, job_rup.ini is the file generating the ruptures, job_gmf.ini is the file generating
the ground motion files and job_all.ini is the file encompassing all countries.

Finally, if you have a file job_haz.ini generating the full GMFs, a file job_weak.ini generating
the losses with a weak building code and a file job_strong.ini generating the losses with a strong
building code, you can run the entire an analysis with a single command as follows:

$ oq engine --run job_haz.ini job_weak.ini job_strong.ini

This will generate three calculations and the GMFs will be reused. This is as efficient as possible
for this kind of problem.

30.2 Caveat: GMFs are split-dependent

You should not expect the results of approach #4 to match exactly the results of approaches #3 or
#2, since splitting a calculation by countries is a tricky operation. In general, if you have a set of
sites and you split it in disjoint subsets, and then you compute the ground motion fields for each
subset, you will get different results than if you do not split.

To be concrete, if you run a calculation for Chile and then one for Argentina, you will get different
results than running a single calculation for Chile+Argentina, even if you have precomputed the
ruptures for both countries, even if the random seeds are the same and even if there is no spatial
correlation. Many users are surprised but this fact, but it is obvious if you know how the GMFs are
computed. Suppose you are considering 3 sites in Chile and 2 sites in Argentina, and that the value
of the random seed in 123456: if you split, assuming there is a single event, you will produce the
following 3+2 normally distributed random numbers:

>>> np.random.default_rng(123456).normal(size=3) # for Chile
array([0.1928212 , -0.06550702, 0.43550665])
>>> np.random.default_rng(123456).normal(size=2) # for Argentina
array([0.1928212 , -0.06550702])

If you do not split, you will generate the following 5 random numbers instead:

>>> np.random.default_rng(123456).normal(size=5)
array([0.1928212 , -0.06550702, 0.43550665, 0.88235875, 0.37132785])

30.2. Caveat: GMFs are split-dependent 167

OpenQuake for Advanced Users Documentation, Release 3.18.0

They are unavoidably different. You may argue that not splitting is the correct way of proceeding,
since the splitting causes some random numbers to be repeated (the numbers 0.1928212 and -
0.0655070 in this example) and actually breaks the normal distribution.

In practice, if there is a sufficiently large event-set and if you are interested in statistical quantities,
things work out and you should see similar results with and without splitting. But you will never
produce identical results. Only the classical calculator does not depend on the splitting of the sites,
for event based and scenario calculations there is no way out.

168 Chapter 30. Risk profiles

CHAPTER

THIRTYONE

SPECIAL FEATURES OF THE ENGINE

There are a few less frequently used features of the engine that are not documented in the general
user’s manual, since their usage is quite specific. They are documented here.

31.1 Sensitivity analysis

Running a sensitivity analysis study means to run multiple calculations by changing a parameter and
to study how the results change. For instance, it is interesting to study the random seed dependency
when running a calculation using sampling of the logic tree, or it is interesting to study the impact
of the truncation level on the PoEs. The engine offers a special syntax to run a sensitivity analysis
with respect to one (or even more than one) parameter; you can find examples in the demos, see
for instance the MultiPointClassicalPSHA demo or the EventBasedDamage demo. It is enough to
write in the job.ini a dictionary of lists like the following:

sensitivity_analysis = {"random_seed": [100, 200, 300]}
sensitivity_analysis = {'truncation_level': [2, 3]}

The first example with run 3 calculations, the second 2 calculations. The calculations will be se-
quential unless you specify the --many flag in oq engine --run --many job.ini. The de-
scriptions of the spawned calculation will be extended to include the parameter, so you could have
descriptions as follows:

Multipoint demo {'truncation_level': 2}
Multipoint demo {'truncation_level': 3}

NB: from version 3.17 the engine is also able to run sensitivity analysis on file parameters. For
instance if you want to run a classical_risk calculation starting from three different hazard
inputs you can write:

sensitivity_analysis = {
"hazard_curves_file": ["hazard1.csv", "hazard2.csv", "hazard3.csv"]}

169

OpenQuake for Advanced Users Documentation, Release 3.18.0

31.2 The custom_site_id

Since engine 3.13, it is possible to assign 6-character ASCII strings as unique identifiers for the
sites (8-characters since engine 3.15). This can be convenient in various situations, especially
when splitting a calculation in geographic regions. The way to enable it is to add a field called
custom_site_id to the site model file, which must be unique for each site.

The hazard curve and ground motion field exporters have been modified to export the
custom_site_id instead of the site_id (if present).

We used this feature to split the ESHM20 model in two parts (Northern Europe and Southern Eu-
rope). Then creating the full hazard map was as trivial as joining the generated CSV files. Without
the custom_site_id the site IDs would overlap, thus making impossible to join the outputs.

A geohash string (see https://en.wikipedia.org/wiki/Geohash) makes a good custom_site_id
since it can enable the unique identification of all potential sites across the globe.

31.3 The minimum_distance parameter

GMPEs often have a prescribed range of validity. In particular they may give unexpected results for
points too close to ruptures. To avoid this problem the engine recognizes a minimum_distance
parameter: if it is set, then for distances below the specified minimum distance, the GMPEs return
the ground-motion value at the minimum distance. This avoids producing extremely large (and
physically unrealistic) ground-motion values at small distances. The minimum distance is some-
what heuristic. It may be useful to experiment with different values of the minimum_distance, to
see how the hazard and risk change.

31.4 Equivalent Epicenter Distance Approximation

The equivalent epicenter distance approximation (reqv for short) was introduced in engine 3.2 to
enable the comparison of the OpenQuake engine with time-honored Fortran codes using the same
approximation.

You can enable it in the engine by adding a [reqv] section to the job.ini, like in our example in
openquake/qa_tests_data/logictree/case_02/job.ini:

reqv_hdf5 = {'active shallow crust': 'lookup_asc.hdf5',
'stable shallow crust': 'lookup_sta.hdf5'}

For each tectonic region type to which the approximation should be applied, the user must provide
a lookup table in .hdf5 format containing arrays mags of shape M, repi of shape N and reqv of
shape (M, N).

170 Chapter 31. Special features of the engine

https://en.wikipedia.org/wiki/Geohash

OpenQuake for Advanced Users Documentation, Release 3.18.0

The examples in openquake/qa_tests_data/classical/case_2 will give you the exact format required.
M is the number of magnitudes (in the examples there are 26 magnitudes ranging from 6.05 to 8.55)
and N is the number of epicenter distances (in the examples ranging from 1 km to 1000 km).

Depending on the tectonic region type and rupture magnitude, the engine converts the epicentral
distance repi into an equivalent distance by looking at the lookup table and use it to determine the
rjb and rrup distances, instead of the regular routines. This means that within this approximation
ruptures are treated as pointwise and not rectangular as the engine usually does.

Notice that the equivalent epicenter distance approximation only applies to ruptures coming from
PointSources/AreaSources/MultiPointSources, fault sources are untouched.

31.5 Ruptures in CSV format

Since engine v3.10 there is a way to serialize ruptures in CSV format. The command to give is:

$ oq extract "ruptures?min_mag=<mag>" <calc_id>`

For instance, assuming there is an event based calculation with ID 42, we can extract the ruptures in
the datastore with magnitude larger than 6 with oq extract "ruptures?min_mag=6" 42: this
will generate a CSV file. Then it is possible to run scenario calculations starting from that rupture
by simply setting

rupture_model_file = ruptures-min_mag=6_42.csv

in the job.ini file. The format is provisional and may change in the future, but it will stay a CSV
with JSON fields. Here is an example for a planar rupture, i.e. a rupture generated by a point source:

#,,,,,,,,,,"trts=['Active Shallow Crust']"
seed,mag,rake,lon,lat,dep,multiplicity,trt,kind,mesh,extra
24,5.050000E+00,0.000000E+00,0.08456,0.15503,5.000000E+00,1,Active␣
→˓Shallow Crust,ParametricProbabilisticRupture PlanarSurface,"[[[[0.08456,
→˓ 0.08456, 0.08456, 0.08456]], [[0.13861, 0.17145, 0.13861, 0.17145]],␣
→˓[[3.17413, 3.17413, 6.82587, 6.82587]]]]","{""occurrence_rate"": 4e-05}"

The format is meant to support all kind of ruptures, including ruptures generated by simple and
complex fault sources, characteristic sources, nonparametric sources and new kind of sources that
could be introduced in the engine in the future. The header will be the same for all kind of ruptures
that will be stored in the same CSV. Here is description of the fields as they are named now (engine
3.11):

seed
the random seed used to compute the GMFs generated by the rupture

mag
the magnitude of the rupture

31.5. Ruptures in CSV format 171

OpenQuake for Advanced Users Documentation, Release 3.18.0

rake
the rake angle of the rupture surface in degrees

lon
the longitude of the hypocenter in degrees

lat
the latitude of the hypocenter in degrees

dep
the depth of the hypocenter in km

multiplicity
the number of occurrences of the rupture (i.e. number of events)

trt
the tectonic region type of the rupture; must be consistent with the trts listed in the pre-header
of the file

kind
a space-separated string listing the rupture class and the surface class used in the engine

mesh
3 times nested list with lon, lat, dep of the points of the discretized rupture geometry for each
underlying surface

extra
extra parameters of the rupture as a JSON dictionary, for instance the rupture occurrence rate

Notice that using a CSV file generated with an old version of the engine is inherently risky: for
instance if we changed the ParametricProbabilisticRupture class or the PlanarSurface
classes in an incompatible way with the past, then a scenario calculation starting with the CSV
would give different results in the new version of the engine. We never changed the rupture classes
or the surface classes, but we changed the seed algorithm often, and that too would cause different
numbers to be generated (hopefully, statistically consistent). A bug fix or change of logic in the
calculator can also change the numbers across engine versions.

31.6 max_sites_disagg

There is a parameter in the job.ini called max_sites_disagg, with a default value of 10. This
parameter controls the maximum number of sites on which it is possible to run a disaggregation. If
you need to run a disaggregation on a large number of sites you will have to increase that parameter.
Notice that there are technical limits: trying to disaggregate 100 sites will likely succeed, trying
to disaggregate 100,000 sites will most likely cause your system to go out of memory or out of
disk space, and the calculation will be terribly slow. If you have a really large number of sites to
disaggregate, you will have to split the calculation and it will be challenging to complete all the
subcalculations.

172 Chapter 31. Special features of the engine

OpenQuake for Advanced Users Documentation, Release 3.18.0

The parameter max_sites_disagg is extremely important not only for disaggregation, but also
for classical calculations. Depending on its value and then number of sites (N) your calculation can
be in the few sites regime or the many sites regime.

In the few sites regime (N <= max_sites_disagg) the engine stores information for each rupture
in the model (in particular the distances for each site) and therefore uses more disk space. The
problem is mitigated since the engine uses a relatively aggressive strategy to collapse ruptures, but
that requires more RAM available.

In the many sites regime (N > max_sites_disagg) the engine does not store rupture information
(otherwise it would immediately run out of disk space, since typical hazard models have tens of
millions of ruptures) and uses a much less aggressive strategy to collapse ruptures, which has the
advantage of requiring less RAM.

31.6. max_sites_disagg 173

	General
	Common mistakes: bad configuration parameters
	The quadratic parameters
	Maximum distance
	pointsource_distance
	The linear parameters: width_of_mfd_bin and intensity levels
	concurrent_tasks parameter

	Developing with the engine
	Prerequisites
	The first thing to do
	Understanding the engine
	Running calculations programmatically
	Case study: computing the impact of a source on a site
	Working with GMPEs directly: the ContextMaker
	Working with verification tables
	Running the engine tests

	Architecture of the OpenQuake engine
	Components of the OpenQuake Engine
	Design principles

	How the parallelization works in the engine
	How to use openquake.baselib.parallel

	Extracting data from calculations
	Plotting
	Extracting disaggregation outputs
	Extracting ruptures

	Reading outputs with pandas
	Example: how many events per magnitude?

	Limitations of Floating-point Arithmetic
	Some useful oq commands
	oq zip
	Importing a remote calculation
	plotting commands
	prepare_site_model
	Reducing the source model
	Comparing hazard results
	Showing calculation attributes
	Mosaic-related commands
	Running a PSHA analysis
	Sampling ruptures
	Sampling ground motion fields

	Logic Trees
	extendModel
	The logic tree demo
	The concept of effective realizations
	Reduction of the logic tree
	How to analyze the logic tree of a calculation without running the calculation

	Source Specific Logic Trees
	Extracting the hazard curves
	Sampling of the logic tree

	Logic tree sampling strategies
	GMPE logic trees with weighted IMTs

	Classical PSHA
	Reducing a calculation
	Classical PSHA for Europe (SHARE)
	Collapsing the GMPE logic tree

	Parametric GMPEs
	Signature of a GMPE class
	GMPETable
	File-dependent GMPEs
	MultiGMPE
	GenericGmpeAvgSA
	ModifiableGMPE

	MultiPointSources
	The point source gridding approximation
	Application: making the Canada model 26x faster
	How to determine the “right” value for the ps_grid_spacing parameter

	disagg_by_src
	The post-processing framework and Vector-valued PSHA calculations
	The conditional spectrum post-processor

	Event Based and Scenarios
	Understanding the hazard
	region_grid_spacing
	Collapsing of branches
	Using collect_rlzs=true in the risk calculation
	Splitting the calculation into subregions
	Trimming of the logic-trees or sampling of the branches
	ignore_covs vs ignore_master_seed

	The asset loss table
	The Probable Maximum Loss (PML) and the loss curves
	Aggregate loss curves

	Aggregating by multiple tags

	Rupture sampling: how does it work?
	The difference between full enumeration and sampling

	Rupture sampling: how to get it wrong
	Extra tips specific to event based calculations
	Convergency of the GMFs for non-trivial logic trees

	The concept of “mean” ground motion field
	Mean ground motion field by GMPE
	Mean ground motion field by event
	Single-rupture estimated median ground motion field
	Case study: GMFs for California

	Extended consequences
	discrete_damage_distribution
	The EventBasedDamage demo
	The ScenarioDamage demo
	Taxonomy mapping

	Correlation of Ground Motion Fields
	Scenarios from ShakeMaps
	Running the Calculation
	Correlation
	Performance Considerations

	Reinsurance calculations
	Input files
	Exposure file
	Insurance and reinsurance information (reinsurance.xml)
	Policy information (policy.csv)
	Configuration file job.ini

	Output files

	How the hazard sites are determined
	Risk profiles
	Single-line commands
	Caveat: GMFs are split-dependent

	Special features of the engine
	Sensitivity analysis
	The custom_site_id
	The minimum_distance parameter
	Equivalent Epicenter Distance Approximation
	Ruptures in CSV format
	max_sites_disagg

