Travasarou et al. (2003)

class openquake.hazardlib.gsim.travasarou_2003.TravasarouEtAl2003[source]

Implements the ground motion prediction equation for Arias Intensity given by Travasarou et al., (2003): Travasarou, T., Bray, J. D. and Abrahamson, N. A. (2003) “Emprical Attenuation Relationship for Arias Intensity”, Earthquake Engineering and Structural Dynamics, 32: 1133 - 1155

Ground motion records are generally taken from active shallow crustal regions

COEFFS = <openquake.hazardlib.gsim.base.CoeffsTable object>

For Ia, coefficients are taken from table 3,


Supported intensity measure component is actually the arithmetic mean of two horizontal components - we find this to be equivalent to AVERAGE_HORIZONTAL

DEFINED_FOR_INTENSITY_MEASURE_TYPES = set([<class 'openquake.hazardlib.imt.IA'>])

Set of intensity measure types this GSIM can calculate. A set should contain classes from module openquake.hazardlib.imt.

DEFINED_FOR_STANDARD_DEVIATION_TYPES = set(['Total', 'Inter event', 'Intra event'])

Supported standard deviation types are inter-event, intra-event and total, see equations 13 - 15


Supported tectonic region type is ‘active shallow crust’

REQUIRES_DISTANCES = set(['rrup'])

Required distance measure is RRup (eq. 1, page 199).

REQUIRES_RUPTURE_PARAMETERS = set(['rake', 'mag'])

Required rupture parameters are magnitude and rake (eq. 1, page 199).


Required site parameter is only Vs30 (used to distinguish rock and stiff and soft soil).

get_mean_and_stddevs(sites, rup, dists, imt, stddev_types)[source]

See superclass method for spec of input and result values.

non_verified = True

No independent tests - verification against paper