Si and Midorikawa 1999

class openquake.hazardlib.gsim.si_midorikawa_1999.SiMidorikawa1999Asc[source]

Implements GMPE developed by Hongjun Si and Saburoh Midorikawa (1999) as described in “Technical Reports on National Seismic Hazard Maps for Japan” (2009, National Research Institute for Earth Science and Disaster Prevention, Japan, pages 148-151). This class implements the equations for ‘Active Shallow Crust’ (that’s why the class name ends with ‘Asc’).

AMP_F = 1.41

Amplification factor to scale PGV from 600 to 400 m/s vs30, see equation 3.5.1-1 page 148

DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = 'Greater of two horizontal'

Supported intensity measure component is greater of of two horizontal components : attr:~openquake.hazardlib.const.IMC.GREATER_OF_TWO_HORIZONTAL

DEFINED_FOR_INTENSITY_MEASURE_TYPES = set([<class 'openquake.hazardlib.imt.PGV'>])

Supported intensity measure type is PGV

DEFINED_FOR_STANDARD_DEVIATION_TYPES = set(['Total'])

Supported standard deviation type is total

DEFINED_FOR_TECTONIC_REGION_TYPE = 'Active Shallow Crust'

Supported tectonic region type is active shallow crust

REQUIRES_DISTANCES = set(['rrup'])

Required distance measure is Rrup

REQUIRES_RUPTURE_PARAMETERS = set(['hypo_depth', 'mag'])

Required rupture parameters are magnitude, and hypocentral depth

REQUIRES_SITES_PARAMETERS = set([])

No sites parameters are required

get_mean_and_stddevs(sites, rup, dists, imt, stddev_types)[source]

Implements equation 3.5.1-1 page 148 for mean value and equation 3.5.5-2 page 151 for total standard deviation.

See superclass method for spec of input and result values.

class openquake.hazardlib.gsim.si_midorikawa_1999.SiMidorikawa1999SInter[source]

Implements GMPE developed by Hongjun Si and Saburoh Midorikawa (1999) as described in “Technical Reports on National Seismic Hazard Maps for Japan” (2009, National Research Institute for Earth Science and Disaster Prevention, Japan, pages 148-151). This class implements the equations for ‘Subduction Interface’ (that’s why the class name ends with ‘SInter’).

DEFINED_FOR_TECTONIC_REGION_TYPE = 'Subduction Interface'

Supported tectonic region type is subduction interface

get_mean_and_stddevs(sites, rup, dists, imt, stddev_types)[source]

Implements equation 3.5.1-1 page 148 for mean value and equation 3.5.5-1 page 151 for total standard deviation.

See superclass method for spec of input and result values.

class openquake.hazardlib.gsim.si_midorikawa_1999.SiMidorikawa1999SInterNorthEastCorrection[source]

Extend SiMidorikawa1999SInter and takes into account correction for northeast Japan (i.e. proximity to subduction trench)

get_mean_and_stddevs(sites, rup, dists, imt, stddev_types)[source]

Implements equation 3.5.1-1 page 148 for mean value and equation 3.5.5-1 page 151 for total standard deviation.

See superclass method for spec of input and result values.

class openquake.hazardlib.gsim.si_midorikawa_1999.SiMidorikawa1999SInterSouthWestCorrection[source]

Extend SiMidorikawa1999SInter and takes into account correction for southwest Japan (i.e. proximity with volcanic front)

get_mean_and_stddevs(sites, rup, dists, imt, stddev_types)[source]

Implements equation 3.5.1-1 page 148 for mean value and equation 3.5.5-1 page 151 for total standard deviation.

See superclass method for spec of input and result values.

class openquake.hazardlib.gsim.si_midorikawa_1999.SiMidorikawa1999SSlab[source]

Implements GMPE developed by Hongjun Si and Saburoh Midorikawa (1999) as described in “Technical Reports on National Seismic Hazard Maps for Japan” (2009, National Research Institute for Earth Science and Disaster Prevention, Japan, pages 148-151). This class implements the equations for ‘Subduction IntraSlab’ (that’s why the class name ends with ‘SSlab’).

DEFINED_FOR_TECTONIC_REGION_TYPE = 'Subduction IntraSlab'

Supported tectonic region type is subduction intraslab

get_mean_and_stddevs(sites, rup, dists, imt, stddev_types)[source]

Implements equation 3.5.1-1 page 148 for mean value and equation 3.5.5-1 page 151 for total standard deviation.

See superclass method for spec of input and result values.

class openquake.hazardlib.gsim.si_midorikawa_1999.SiMidorikawa1999SSlabNorthEastCorrection[source]

Extend SiMidorikawa1999SSlab and takes into account correction for northeast Japan (i.e. proximity to subduction trench)

get_mean_and_stddevs(sites, rup, dists, imt, stddev_types)[source]

Implements equation 3.5.1-1 page 148 for mean value and equation 3.5.5-1 page 151 for total standard deviation.

See superclass method for spec of input and result values.

class openquake.hazardlib.gsim.si_midorikawa_1999.SiMidorikawa1999SSlabSouthWestCorrection[source]

Extend SiMidorikawa1999SSlab and takes into account correction for southwest Japan (i.e. proximity to volcanic front)

get_mean_and_stddevs(sites, rup, dists, imt, stddev_types)[source]

Implements equation 3.5.1-1 page 148 for mean value and equation 3.5.5-1 page 151 for total standard deviation.

See superclass method for spec of input and result values.

Previous topic

Silva et al. 2002

Next topic

Somerville et al. 2001

This Page