openquake.risklib package

openquake.risklib.riskinput module

class openquake.risklib.riskinput.AssetCollection(assets_by_site, cost_calculator, time_event, time_events='')[source]

Bases: object

D = 11
I = 16
R = 12
assets_by_site()[source]
Returns:numpy array of lists with the assets by each site
static build_asset_collection(assets_by_site, time_event=None)[source]
Parameters:
  • assets_by_site – a list of lists of assets
  • time_event – a time event string (or None)
Returns:

two arrays assetcol and taxonomies

class openquake.risklib.riskinput.CompositeRiskModel(riskmodels, damage_states=None)[source]

Bases: _abcoll.Mapping

A container (imt, taxonomy) -> riskmodel.

Parameters:
  • riskmodels – a dictionary (imt, taxonomy) -> riskmodel
  • damage_states – None or a list of damage states
build_all_loss_dtypes(curve_resolution, conditional_loss_poes, insured_losses=False)[source]
Parameters:
  • conditional_loss_poes – configuration parameter
  • insured_losses – configuration parameter
Returns:

loss_curve_dt and loss_maps_dt

build_input(hazards_by_site, assetcol, eps_dict)[source]
Parameters:
  • hazards_by_site – an array of hazards per each site
  • assetcol – AssetCollection instance
  • eps_dict – a dictionary of epsilons
Returns:

a RiskInput instance

build_inputs_from_ruptures(grp_trt, imts, sitecol, all_ruptures, trunc_level, correl_model, min_iml, eps, hint)[source]
Parameters:
  • imts – list of intensity measure type strings
  • sitecol – a SiteCollection instance
  • all_ruptures – the complete list of EBRupture instances
  • trunc_level – the truncation level (or None)
  • correl_model – the correlation model (or None)
  • min_iml – an array of minimum IMLs per IMT
  • eps – a matrix of epsilons of shape (N, E) or None
  • hint – hint for how many blocks to generate

Yield RiskInputFromRuptures instances.

build_loss_dtypes(conditional_loss_poes, insured_losses=False)[source]
Parameters:
  • conditional_loss_poes – configuration parameter
  • insured_losses – configuration parameter
Returns:

loss_curve_dt and loss_maps_dt

gen_outputs(riskinput, rlzs_assoc, monitor, assetcol=None)[source]

Group the assets per taxonomy and compute the outputs by using the underlying riskmodels. Yield the outputs generated as dictionaries out_by_lr.

Parameters:
  • riskinput – a RiskInput instance
  • rlzs_assoc – a RlzsAssoc instance
  • monitor – a monitor object used to measure the performance
  • assetcol – not None only for event based risk
get_loss_ratios()[source]
Returns:a 1-dimensional composite array with loss ratios by loss type
get_min_iml()[source]
make_curve_builders(oqparam)[source]

Populate the inner lists .loss_types, .curve_builders.

class openquake.risklib.riskinput.GmfGetter(gsims, ebruptures, sitecol, imts, min_iml, truncation_level, correlation_model, samples)[source]

Bases: object

Callable returning a list of N dictionaries imt -> array(gmv, eid). when called on a realization.

dt = dtype([('gmv', '<f4'), ('eid', '<u4')])
class openquake.risklib.riskinput.Gmvset[source]

Bases: object

Emulate a dataset containing ground motion values per event ID, realization ordinal and IMT index.

append(gmv, eid, rlzi, imti)[source]
dt = dtype([('gmv', '<f4'), ('eid', '<u4'), ('rlzi', '<u2'), ('imti', 'u1')])
value[source]
class openquake.risklib.riskinput.PoeGetter(hazard_by_site, rlzs_assoc)[source]

Bases: object

Callable returning a list of N dictionaries imt -> curve when called on a realization.

class openquake.risklib.riskinput.RiskInput(hazard_by_site, assets_by_site, eps_dict)[source]

Bases: object

Contains all the assets and hazard values associated to a given imt and site.

Parameters:
  • imt_taxonomies – a pair (IMT, taxonomies)
  • hazard_by_site – array of hazards, one per site
  • assets_by_site – array of assets, one per site
  • eps_dict – dictionary of epsilons
epsilon_getter(asset_ordinals)[source]
Parameters:asset_ordinals – list of ordinals of the assets
Returns:a closure returning an array of epsilons from the event IDs
hazard_getter(rlzs_assoc, monitor=<Monitor dummy>)[source]
Parameters:
Returns:

list of hazard dictionaries imt -> rlz -> haz per each site

imt_taxonomies[source]

Return a list of pairs (imt, taxonomies) with a single element

class openquake.risklib.riskinput.RiskInputFromRuptures(trt, imts, sitecol, ses_ruptures, trunc_level, correl_model, min_iml, epsilons=None)[source]

Bases: object

Contains all the assets associated to the given IMT and a subsets of the ruptures for a given calculation.

Parameters:
  • imts – a list of intensity measure type strings
  • sitecol – SiteCollection instance
  • assets_by_site – list of list of assets
  • ses_ruptures – ordered array of EBRuptures
  • gsims – list of GSIM instances
  • trunc_level – truncation level for the GSIMs
  • correl_model – correlation model for the GSIMs
  • min_iml – an array with the minimum intensity per IMT
  • eids – an array of event IDs (or None)
Params epsilons:
 

a matrix of epsilons (or None)

epsilon_getter(asset_ordinals)[source]
Parameters:asset_ordina – ordinal of the asset
Returns:a closure returning an array of epsilons from the event IDs
hazard_getter(rlzs_assoc, monitor=<Monitor dummy>)[source]
Parameters:
Returns:

lists of N hazard dictionaries imt -> rlz -> Gmvs

openquake.risklib.riskinput.agg_prob(acc, prob)[source]

Aggregation function for probabilities

openquake.risklib.riskinput.combine(rlzs_assoc, results, agg=<function agg_prob at 0x2b0a13944b90>)[source]
Parameters:
  • results – a dictionary (src_group_id, gsim) -> floats
  • agg – an aggregation function
Returns:

a dictionary rlz -> aggregated floats

Example: a case with tectonic region type T1 with GSIMS A, B, C and tectonic region type T2 with GSIMS D, E.

>> assoc = RlzsAssoc(CompositionInfo([], [])) >> assoc.rlzs_assoc = { ... (‘T1’, ‘A’): [‘r0’, ‘r1’], ... (‘T1’, ‘B’): [‘r2’, ‘r3’], ... (‘T1’, ‘C’): [‘r4’, ‘r5’], ... (‘T2’, ‘D’): [‘r0’, ‘r2’, ‘r4’], ... (‘T2’, ‘E’): [‘r1’, ‘r3’, ‘r5’]} ... >> results = { ... (‘T1’, ‘A’): 0.01, ... (‘T1’, ‘B’): 0.02, ... (‘T1’, ‘C’): 0.03, ... (‘T2’, ‘D’): 0.04, ... (‘T2’, ‘E’): 0.05,} ... >> combinations = combine(assoc, results, operator.add) >> for key, value in sorted(combinations.items()): print key, value r0 0.05 r1 0.06 r2 0.06 r3 0.07 r4 0.07 r5 0.08

You can check that all the possible sums are performed:

r0: 0.01 + 0.04 (T1A + T2D) r1: 0.01 + 0.05 (T1A + T2E) r2: 0.02 + 0.04 (T1B + T2D) r3: 0.02 + 0.05 (T1B + T2E) r4: 0.03 + 0.04 (T1C + T2D) r5: 0.03 + 0.05 (T1C + T2E)

In reality, the .combine function is used with hazard_curves and the aggregation function is the agg_curves function, a composition of probability, which however is close to the sum for small probabilities.

openquake.risklib.riskinput.make_eps(assets_by_site, num_samples, seed, correlation)[source]
Parameters:
  • assets_by_site – a list of lists of assets
  • num_samples (int) – the number of ruptures
  • seed (int) – a random seed
  • correlation (float) – the correlation coefficient
Returns:

epsilons matrix of shape (num_assets, num_samples)

openquake.risklib.riskinput.rsi2str(rlzi, sid, imt)[source]

Convert a triple (XXXX, YYYY, ZZZ) into a string of the form ‘rlz-XXXX/sid-YYYY/ZZZ’

openquake.risklib.riskinput.str2rsi(key)[source]

Convert a string of the form ‘rlz-XXXX/sid-YYYY/ZZZ’ into a triple (XXXX, YYYY, ZZZ)

openquake.risklib.riskmodels module

class openquake.risklib.riskmodels.Asset(asset_id, taxonomy, number, location, values, area=1, deductibles=None, insurance_limits=None, retrofitteds=None, calc=<CostCalculator {'units': {'structural': 'EUR'}, 'deduct_abs': True, 'area_types': {'structural': 'per_asset'}, 'limit_abs': True, 'cost_types': {'structural': 'per_area'}}>, ordinal=None)[source]

Bases: object

Describe an Asset as a collection of several values. A value can represent a replacement cost (e.g. structural cost, business interruption cost) or another quantity that can be considered for a risk analysis (e.g. occupants).

Optionally, a Asset instance can hold also a collection of deductible values and insured limits considered for insured losses calculations.

deductible(loss_type)[source]
Returns:the deductible fraction of the asset cost for loss_type
insurance_limit(loss_type)[source]
Returns:the limit fraction of the asset cost for loss_type
retrofitted(loss_type, time_event=None)[source]
Returns:the asset retrofitted value for loss_type
value(loss_type, time_event=None)[source]
Returns:the total asset value for loss_type
class openquake.risklib.riskmodels.Classical(taxonomy, vulnerability_functions, hazard_imtls, lrem_steps_per_interval, conditional_loss_poes, poes_disagg, insured_losses=False)[source]

Bases: openquake.risklib.riskmodels.RiskModel

Classical PSHA-Based RiskModel.

  1. Compute loss curves, loss maps for each realization.
  2. Compute (if more than one realization is given) mean and quantiles loss curves and maps.

Per-realization Outputs contain the following fields:

Attr assets:an iterable over N assets the outputs refer to
Attr loss_curves:
 a numpy array of N loss curves. If the curve resolution is C, the final shape of the array will be (N, 2, C), where the two accounts for the losses/poes dimensions
Attr average_losses:
 a numpy array of N average loss values
Attr insured_curves:
 a numpy array of N insured loss curves, shaped (N, 2, C)
Attr average_insured_losses:
 a numpy array of N average insured loss values
Attr loss_maps:a numpy array of P elements holding N loss maps where P is the number of conditional_loss_poes considered. Shape: (P, N)

The statistical outputs are stored into openquake.risklib.scientific.Output, which holds the following fields:

Attr assets:an iterable of N assets the outputs refer to
Attr mean_curves:
 A numpy array with N mean loss curves. Shape: (N, 2)
Attr mean_average_losses:
 A numpy array with N mean average loss values
Attr mean_maps:A numpy array with P mean loss maps. Shape: (P, N)
Attr mean_fractions:
 A numpy array with F mean fractions, where F is the number of PoEs used for disaggregation. Shape: (F, N)
Attr quantile_curves:
 A numpy array with Q quantile curves (Q = number of quantiles). Shape: (Q, N, 2, C)
Attr quantile_average_losses:
 A numpy array shaped (Q, N) with average losses
Attr quantile_maps:
 A numpy array with Q quantile maps shaped (Q, P, N)
Attr quantile_fractions:
 A numpy array with Q quantile maps shaped (Q, F, N)
Attr mean_insured_curves:
 A numpy array with N mean insured loss curves. Shape: (N, 2)
Attr mean_average_insured_losses:
 A numpy array with N mean average insured loss values
Attr quantile_insured_curves:
 A numpy array with Q quantile insured curves (Q = number of quantiles). Shape: (Q, N, 2, C)
Attr quantile_average_insured_losses:
 A numpy array shaped (Q, N) with average insured losses
kind = 'vulnerability'
class openquake.risklib.riskmodels.ClassicalBCR(taxonomy, vulnerability_functions_orig, vulnerability_functions_retro, hazard_imtls, lrem_steps_per_interval, interest_rate, asset_life_expectancy)[source]

Bases: openquake.risklib.riskmodels.RiskModel

kind = 'vulnerability'
class openquake.risklib.riskmodels.ClassicalDamage(taxonomy, fragility_functions, hazard_imtls, investigation_time, risk_investigation_time)[source]

Bases: openquake.risklib.riskmodels.Damage

Implements the ClassicalDamage riskmodel

kind = 'fragility'
class openquake.risklib.riskmodels.CostCalculator(cost_types, area_types, units, deduct_abs=True, limit_abs=True)[source]

Bases: object

Return the value of an asset for the given loss type depending on the cost types declared in the exposure, as follows:

case 1: cost type: aggregated:
cost = economic value
case 2: cost type: per asset:
cost * number (of assets) = economic value
case 3: cost type: per area and area type: aggregated:
cost * area = economic value
case 4: cost type: per area and area type: per asset:
cost * area * number = economic value

The same “formula” applies to retrofitting cost.

class openquake.risklib.riskmodels.Damage(taxonomy, fragility_functions)[source]

Bases: openquake.risklib.riskmodels.RiskModel

Implements the ScenarioDamage riskmodel

kind = 'fragility'
class openquake.risklib.riskmodels.EventBasedReduced(taxonomy, vulnerability_functions, time_event)[source]

Bases: openquake.risklib.riskmodels.RiskModel

Implements the reduced event based riskmodel. This is used by the EbrCalculator, a much simplified calculator that ignores asset correlation and insured losses, cannot compute the event loss table, nor the average losses, nor the loss curves. The only output returned is the total loss.

kind = 'vulnerability'
class openquake.risklib.riskmodels.ProbabilisticEventBased(taxonomy, vulnerability_functions, loss_curve_resolution, conditional_loss_poes, insured_losses=False)[source]

Bases: openquake.risklib.riskmodels.RiskModel

Implements the Probabilistic Event Based riskmodel

Per-realization Output are saved into openquake.risklib.scientific.ProbabilisticEventBased.Output which contains the several fields:

Attr assets:an iterable over N assets the outputs refer to
Attr loss_matrix:
 an array of losses shaped N x T (where T is the number of events)
Attr loss_curves:
 a numpy array of N loss curves. If the curve resolution is C, the final shape of the array will be (N, 2, C), where the two accounts for the losses/poes dimensions
Attr average_losses:
 a numpy array of N average loss values
Attr stddev_losses:
 a numpy array holding N standard deviation of losses
Attr insured_curves:
 a numpy array of N insured loss curves, shaped (N, 2, C)
Attr average_insured_losses:
 a numpy array of N average insured loss values
Attr stddev_insured_losses:
 a numpy array holding N standard deviation of losses
Attr loss_maps:a numpy array of P elements holding N loss maps where P is the number of conditional_loss_poes considered. Shape: (P, N)
Attr dict event_loss_table:
 a dictionary mapping event ids to aggregate loss values

The statistical outputs are stored into openquake.risklib.scientific.Output objects.

kind = 'vulnerability'
class openquake.risklib.riskmodels.RiskModel(taxonomy, risk_functions)[source]

Bases: object

Base class. Can be used in the tests as a mock.

compositemodel = None
get_loss_types(imt)[source]
Parameters:imt – Intensity Measure Type string
Returns:loss types with risk functions of the given imt
kind = None
loss_types[source]

The list of loss types in the underlying vulnerability functions, in lexicographic order

time_event = None
class openquake.risklib.riskmodels.Scenario(taxonomy, vulnerability_functions, insured_losses, time_event=None)[source]

Bases: openquake.risklib.riskmodels.RiskModel

Implements the Scenario riskmodel

kind = 'vulnerability'
openquake.risklib.riskmodels.get_riskmodel(taxonomy, oqparam, **extra)[source]

Return an instance of the correct riskmodel class, depending on the attribute calculation_mode of the object oqparam.

Parameters:
  • taxonomy – a taxonomy string
  • oqparam – an object containing the parameters needed by the riskmodel class
  • extra – extra parameters to pass to the riskmodel class
openquake.risklib.riskmodels.get_values(loss_type, assets, time_event=None)[source]
Returns:a numpy array with the values for the given assets, depending on the loss_type.
openquake.risklib.riskmodels.rescale(curves, values)[source]

Multiply the losses in each curve of kind (losses, poes) by the corresponding value.

openquake.risklib.scientific module

This module includes the scientific API of the oq-risklib

class openquake.risklib.scientific.BetaDistribution[source]

Bases: openquake.risklib.scientific.Distribution

sample(means, _covs, stddevs, _idxs=None)[source]
survival(loss_ratio, mean, stddev)[source]
class openquake.risklib.scientific.ConsequenceFunction

Bases: tuple

ConsequenceFunction(id, dist, params)

dist

Alias for field number 1

id

Alias for field number 0

params

Alias for field number 2

class openquake.risklib.scientific.ConsequenceModel(id, assetCategory, lossCategory, description, limitStates)[source]

Bases: dict

Container for a set of consequence functions. You can access each function given its name with the square bracket notation.

Parameters:
  • id (str) – ID of the model
  • assetCategory (str) – asset category (i.e. buildings, population)
  • lossCategory (str) – loss type (i.e. structural, contents, ...)
  • description (str) – description of the model
  • limitStates – a list of limit state strings
  • consequence_functions – a dictionary name -> ConsequenceFunction
class openquake.risklib.scientific.CurveBuilder(loss_type, loss_ratios, user_provided, conditional_loss_poes=(), insured_losses=False, curve_resolution=None)[source]

Bases: object

Build loss ratio curves. The loss ratios can be provided by the user or automatically generated (user_provided=False). The usage is something like this:

builder = CurveBuilder(loss_type, loss_ratios, user_provided=True) counts = builder.build_counts(loss_matrix)
build_counts(loss_matrix)[source]
Parameters:loss_matrix – a matrix of loss ratios of size N x E, N = #assets, E = #events
build_loss_curves(assetcol, losses_by_aid, ses_ratio)[source]
Parameters:
  • assetcol – asset collection object
  • losses_by_aid – a matrix of losses indexed by asset
  • ses_ratio – event based factor
build_loss_maps(assetcol, rcurves)[source]

Build loss maps from the risk curves. Yield pairs (rlz_ordinal, loss_maps array).

Parameters:
  • assetcol – asset collection
  • rcurves – array of risk curves of shape (N, R, 2)
build_poes(N, count_dicts, ses_ratio)[source]
Parameters:
  • N – the number of assets
  • count_dicts – a list of maps asset_idx -> [C indices]
  • ses_ratio – event based factor
get_counts(N, count_dicts)[source]

Return a matrix of shape (N, C), with nonzero entries at the indices given by the count_dicts

Parameters:
  • N – the number of assets
  • count_dicts – a list of maps asset_idx -> [C indices]
>>> cb = CurveBuilder('structural', [0.1, 0.2, 0.3, 0.9], True)
>>> cb.get_counts(3, [{1: [4, 3, 2, 1]}, {2: [4, 0, 0, 0]},
...                   {1: [1, 0, 0, 0]}, {2: [2, 0, 0, 0]}])
array([[0, 0, 0, 0],
       [5, 3, 2, 1],
       [6, 0, 0, 0]], dtype=uint32)
class openquake.risklib.scientific.DegenerateDistribution[source]

Bases: openquake.risklib.scientific.Distribution

The degenerate distribution. E.g. a distribution with a delta corresponding to the mean.

sample(means, _covs, _stddev, _idxs)[source]
survival(loss_ratio, mean, _stddev)[source]
class openquake.risklib.scientific.DiscreteDistribution[source]

Bases: openquake.risklib.scientific.Distribution

sample(loss_ratios, probs)[source]
seed = None
survival(loss_ratios, probs)[source]

Required for the Classical Risk and BCR Calculators. Currently left unimplemented as the PMF format is used only for the Scenario and Event Based Risk Calculators.

Parameters:steps (int) – number of steps between loss ratios.
class openquake.risklib.scientific.Distribution[source]

Bases: object

A Distribution class models continuous probability distribution of random variables used to sample losses of a set of assets. It is usually registered with a name (e.g. LN, BT, PM) by using openquake.baselib.general.CallableDict

sample(means, covs, stddevs, idxs)[source]
Returns:

sample a set of losses

Parameters:
  • means – an array of mean losses
  • covs – an array of covariances
  • stddevs – an array of stddevs
survival(loss_ratio, mean, stddev)[source]

Return the survival function of the distribution with mean and stddev applied to loss_ratio

class openquake.risklib.scientific.FragilityFunctionContinuous(limit_state, mean, stddev)[source]

Bases: object

class openquake.risklib.scientific.FragilityFunctionDiscrete(limit_state, imls, poes, no_damage_limit=None)[source]

Bases: object

interp[source]
class openquake.risklib.scientific.FragilityFunctionList(array, **attrs)[source]

Bases: list

A list of fragility functions with common attributes; there is a function for each limit state.

mean_loss_ratios_with_steps(steps)[source]

For compatibility with vulnerability functions

class openquake.risklib.scientific.FragilityModel(id, assetCategory, lossCategory, description, limitStates)[source]

Bases: dict

Container for a set of fragility functions. You can access each function given the IMT and taxonomy with the square bracket notation.

Parameters:
  • id (str) – ID of the model
  • assetCategory (str) – asset category (i.e. buildings, population)
  • lossCategory (str) – loss type (i.e. structural, contents, ...)
  • description (str) – description of the model
  • limitStates – a list of limit state strings
build(continuous_fragility_discretization, steps_per_interval)[source]

Return a new FragilityModel instance, in which the values have been replaced with FragilityFunctionList instances.

Parameters:
  • continuous_fragility_discretization – configuration parameter
  • steps_per_interval – configuration parameter
class openquake.risklib.scientific.LogNormalDistribution(epsilons=None)[source]

Bases: openquake.risklib.scientific.Distribution

Model a distribution of a random variable whoose logarithm are normally distributed.

Attr epsilons:An array of random numbers generated with numpy.random.multivariate_normal() with size E
sample(means, covs, _stddevs, idxs)[source]
survival(loss_ratio, mean, stddev)[source]
class openquake.risklib.scientific.Output(assets, loss_type, hid=None, weight=0, **attrs)[source]

Bases: object

A generic container of attributes. Only assets, loss_type, hid and weight are always defined.

Parameters:
  • assets – a list of assets
  • loss_type – a loss type string
  • hid – ordinal of the hazard realization (can be None)
  • weight – weight of the realization (can be None)
class openquake.risklib.scientific.SimpleStats(rlzs, quantiles=())[source]

Bases: object

A class to perform statistics on the average losses. The average losses are stored as N x 2 arrays (non-insured and insured losses) where N is the number of assets.

Parameters:
  • rlzs – a list of realizations
  • quantiles – a list of floats in the range 0..1
compute_and_store(name, dstore)[source]

Compute mean and quantiles from the data in the datastore under the group <name>-rlzs and store them under the group <name>-stats. Return the number of bytes stored.

class openquake.risklib.scientific.StatsBuilder(quantiles, conditional_loss_poes, poes_disagg, curve_resolution=0, _normalize_curves=<function normalize_curves at 0x2b0a12e5e578>, insured_losses=False)[source]

Bases: object

A class to build risk statistics.

Parameters:
  • quantiles – list of quantile values
  • conditional_loss_poes – list of conditional loss poes
  • poes_disagg – list of poes_disagg
  • curve_resolution – only meaninful for the event based
build(all_outputs, prefix='')[source]

Build all statistics from a set of risk outputs.

Parameters:all_outputs – a non empty sequence of risk outputs referring to the same assets and loss_type. Each output must have attributes assets, loss_type, hid, weight, loss_curves and insured_curves (the latter is possibly None).
Returns:an Output object with the following attributes (numpy arrays; the shape is in parenthesis, N is the number of assets, R the resolution of the loss curve, P the number of conditional loss poes, Q the number of quantiles):

01. assets (N) 02. loss_type (1) 03. mean_curves (2, N, 2, R) 04. mean_average_losses (2, N) 05. mean_map (2, P, N) 06. mean_fractions (2, P, N) 07. quantile_curves (2, Q, N, 2, R) 08. quantile_average_losses (2, Q, N) 09. quantile_maps (2, Q, P, N) 10. quantile_fractions (2, Q, P, N) 11. quantiles (Q)

get_curves_maps(stats)[source]
Parameters:stats – an object with attributes mean_curves, mean_average_losses, mean_maps, quantile_curves, quantile_average_losses, quantile_loss_curves, quantile_maps, assets. There is also a loss_type attribute which must be always the same.
Returns:statistical loss curves and maps per asset as composite arrays of shape (Q1, N)
normalize(loss_curves)[source]

Normalize the loss curves by using the provided normalization function

class openquake.risklib.scientific.VulnerabilityFunction(vf_id, imt, imls, mean_loss_ratios, covs=None, distribution='LN')[source]

Bases: object

dtype = dtype([('iml', '<f4'), ('loss_ratio', '<f4'), ('cov', '<f4')])
init()[source]
interpolate(gmvs)[source]
Parameters:gmvs – array of intensity measure levels
Returns:(interpolated loss ratios, interpolated covs, indices > min)
loss_ratio_exceedance_matrix = <functools.partial object at 0x2b0a180af5d0>[source]
mean_imls = <functools.partial object at 0x2b0a180af0a8>[source]
mean_loss_ratios_with_steps(steps)[source]

Split the mean loss ratios, producing a new set of loss ratios. The new set of loss ratios always includes 0.0 and 1.0

Parameters:steps (int) –

the number of steps we make to go from one loss ratio to the next. For example, if we have [0.5, 0.7]:

steps = 1 produces [0.0,  0.5, 0.7, 1]
steps = 2 produces [0.0, 0.25, 0.5, 0.6, 0.7, 0.85, 1]
steps = 3 produces [0.0, 0.17, 0.33, 0.5, 0.57, 0.63,
                    0.7, 0.8, 0.9, 1]
sample(means, covs, idxs, epsilons)[source]

Sample the epsilons and apply the corrections to the means. This method is called only if there are nonzero covs.

Parameters:
  • means – array of E’ loss ratios
  • covs – array of E’ floats
  • idxs – array of E booleans with E >= E’
  • epsilons – array of E floats
Returns:

array of E’ loss ratios

set_distribution(epsilons=None)[source]
strictly_increasing()[source]
Returns:a new vulnerability function that is strictly increasing. It is built by removing piece of the function where the mean loss ratio is constant.
class openquake.risklib.scientific.VulnerabilityFunctionWithPMF(vf_id, imt, imls, loss_ratios, probs, seed=42)[source]

Bases: openquake.risklib.scientific.VulnerabilityFunction

Vulnerability function with an explicit distribution of probabilities

Parameters:
  • vf_id (str) – vulnerability function ID
  • imt (str) – Intensity Measure Type
  • imls – intensity measure levels (L)
  • ratios – an array of mean ratios (M)
  • probs – a matrix of probabilities of shape (M, L)
init()[source]
interpolate(gmvs)[source]
Parameters:gmvs – array of intensity measure levels
Returns:(interpolated probabilities, None, indices > min)
loss_ratio_exceedance_matrix = <functools.partial object at 0x2b0a180afd08>[source]
sample(probs, _covs, idxs, epsilons)[source]

Sample the epsilons and applies the corrections to the probabilities. This method is called only if there are epsilons.

Parameters:
  • probs – array of E’ floats
  • _covs – ignored, it is there only for API consistency
  • idxs – array of E booleans with E >= E’
  • epsilons – array of E floats
Returns:

array of E’ probabilities

set_distribution(epsilons=None)[source]
class openquake.risklib.scientific.VulnerabilityModel(id=None, assetCategory=None, lossCategory=None)[source]

Bases: dict

Container for a set of vulnerability functions. You can access each function given the IMT and taxonomy with the square bracket notation.

Parameters:
  • id (str) – ID of the model
  • assetCategory (str) – asset category (i.e. buildings, population)
  • lossCategory (str) – loss type (i.e. structural, contents, ...)

All such attributes are None for a vulnerability model coming from a NRML 0.4 file.

openquake.risklib.scientific.annual_frequency_of_exceedence(poe, t_haz)[source]
Parameters:
  • poe – hazard probability of exceedence
  • t_haz – hazard investigation time
openquake.risklib.scientific.asset_statistics(losses, curves_poes, quantiles, weights, poes)[source]

Compute output statistics (mean/quantile loss curves and maps) for a single asset

Parameters:
  • losses – the losses on which the loss curves are defined
  • curves_poes – a numpy matrix with the poes of the different curves
  • quantiles (list) – an iterable over the quantile levels to be considered for quantile outputs
  • poes (list) – the poe taken into account for computing loss maps
Returns:

a tuple with 1) mean loss curve 2) a list of quantile curves 3) mean loss map 4) a list of quantile loss maps

openquake.risklib.scientific.average_loss(losses_poes)[source]

Given a loss curve with poes over losses defined on a given time span it computes the average loss on this period of time.

Note:As the loss curve is supposed to be piecewise linear as it is a result of a linear interpolation, we compute an exact integral by using the trapeizodal rule with the width given by the loss bin width.
openquake.risklib.scientific.bcr(eal_original, eal_retrofitted, interest_rate, asset_life_expectancy, asset_value, retrofitting_cost)[source]

Compute the Benefit-Cost Ratio.

BCR = (EALo - EALr)(1-exp(-r*t))/(r*C)

Where:

  • BCR – Benefit cost ratio
  • EALo – Expected annual loss for original asset
  • EALr – Expected annual loss for retrofitted asset
  • r – Interest rate
  • t – Life expectancy of the asset
  • C – Retrofitting cost
openquake.risklib.scientific.build_dtypes(curve_resolution, conditional_loss_poes, insured=False)[source]

Returns loss_curve_dt and loss_maps_dt

openquake.risklib.scientific.build_imls(ff, continuous_fragility_discretization, steps_per_interval=0)[source]

Build intensity measure levels from a fragility function. If the function is continuous, they are produced simply as a linear space between minIML and maxIML. If the function is discrete, they are generated with a complex logic depending on the noDamageLimit and the parameter steps per interval.

Parameters:
  • ff – a fragility function object
  • continuous_fragility_discretization – .ini file parameter
  • steps_per_interval – .ini file parameter
Returns:

generated imls

openquake.risklib.scientific.build_poes(counts, nses)[source]
Parameters:
  • counts – an array of counts of exceedence for the bins
  • nses – number of stochastic event sets
Returns:

an array of PoEs

openquake.risklib.scientific.classical(vulnerability_function, hazard_imls, hazard_poes, steps=10)[source]
Parameters:
  • vulnerability_function – an instance of openquake.risklib.scientific.VulnerabilityFunction representing the vulnerability function used to compute the curve.
  • hazard_imls – the hazard intensity measure type and levels
  • steps (int) – Number of steps between loss ratios.
openquake.risklib.scientific.classical_damage(fragility_functions, hazard_imls, hazard_poes, investigation_time, risk_investigation_time)[source]
Parameters:
  • fragility_functions – a list of fragility functions for each damage state
  • hazard_imls – Intensity Measure Levels
  • hazard_poes – hazard curve
  • investigation_time – hazard investigation time
  • risk_investigation_time – risk investigation time
Returns:

an array of M probabilities of occurrence where M is the numbers of damage states.

openquake.risklib.scientific.conditional_loss_ratio(loss_ratios, poes, probability)[source]

Return the loss ratio corresponding to the given PoE (Probability of Exceendance). We can have four cases:

  1. If probability is in poes it takes the bigger corresponding loss_ratios.
  2. If it is in (poe1, poe2) where both poe1 and poe2 are in poes, then we perform a linear interpolation on the corresponding losses
  3. if the given probability is smaller than the lowest PoE defined, it returns the max loss ratio .
  4. if the given probability is greater than the highest PoE defined it returns zero.
Parameters:
  • loss_ratios – an iterable over non-decreasing loss ratio values (float)
  • poes – an iterable over non-increasing probability of exceedance values (float)
  • probability (float) – the probability value used to interpolate the loss curve
openquake.risklib.scientific.event_based(loss_values, ses_ratio, curve_resolution)[source]

Compute a loss (or loss ratio) curve.

Parameters:
  • loss_values – The loss ratios (or the losses) computed by applying the vulnerability function
  • ses_ratio – Time representative of the stochastic event set
  • curve_resolution – The number of points the output curve is defined by
openquake.risklib.scientific.exposure_statistics(loss_curves, map_poes, weights, quantiles)[source]

Compute exposure statistics for N assets and R realizations.

Parameters:
  • loss_curves – a list with N loss curves data. Each item holds a 2-tuple with 1) the loss ratios on which the curves have been defined on 2) the poes of the R curves
  • map_poes – a numpy array with P poes used to compute loss maps
  • weights – a list of N weights used to compute mean/quantile weighted statistics
  • quantiles – the quantile levels used to compute quantile results
Returns:

a tuple with four elements:
  1. a numpy array with N mean loss curves
  2. a numpy array with P x N mean map values
  3. a numpy array with Q x N quantile loss curves
  4. a numpy array with Q x P quantile map values

openquake.risklib.scientific.extract_poe_ins(name)[source]
>>> extract_poe_ins('poe-0.1')
(0.1, 0)
>>> extract_poe_ins('poe-0.2_ins')
(0.2, 1)
openquake.risklib.scientific.fine_graining(points, steps)[source]
Parameters:
  • points – a list of floats
  • steps (int) – expansion steps (>= 2)
>>> fine_graining([0, 1], steps=0)
[0, 1]
>>> fine_graining([0, 1], steps=1)
[0, 1]
>>> fine_graining([0, 1], steps=2)
array([ 0. ,  0.5,  1. ])
>>> fine_graining([0, 1], steps=3)
array([ 0.        ,  0.33333333,  0.66666667,  1.        ])
>>> fine_graining([0, 0.5, 0.7, 1], steps=2)
array([ 0.  ,  0.25,  0.5 ,  0.6 ,  0.7 ,  0.85,  1.  ])

N points become S * (N - 1) + 1 points with S > 0

openquake.risklib.scientific.insured_loss_curve(curve, deductible, insured_limit)[source]

Compute an insured loss ratio curve given a loss ratio curve

Parameters:
  • curve – an array 2 x R (where R is the curve resolution)
  • deductible (float) – the deductible limit in fraction form
  • insured_limit (float) – the insured limit in fraction form
>>> losses = numpy.array([3, 20, 101])
>>> poes = numpy.array([0.9, 0.5, 0.1])
>>> insured_loss_curve(numpy.array([losses, poes]), 5, 100)
array([[  3.        ,  20.        ],
       [  0.85294118,   0.5       ]])
openquake.risklib.scientific.insured_losses(losses, deductible, insured_limit)[source]
Parameters:
  • losses – an array of ground-up loss ratios
  • deductible (float) – the deductible limit in fraction form
  • insured_limit (float) – the insured limit in fraction form

Compute insured losses for the given asset and losses, from the point of view of the insurance company. For instance:

>>> insured_losses(numpy.array([3, 20, 101]), 5, 100)
array([ 0, 15, 95])
  • if the loss is 3 (< 5) the company does not pay anything
  • if the loss is 20 the company pays 20 - 5 = 15
  • if the loss is 101 the company pays 100 - 5 = 95
openquake.risklib.scientific.loss_map_matrix(poes, curves)[source]

Wrapper around openquake.risklib.scientific.conditional_loss_ratio(). Return a matrix of shape (num-poes, num-curves). The curves are lists of pairs (loss_ratios, poes).

openquake.risklib.scientific.make_epsilons(matrix, seed, correlation)[source]

Given a matrix N * R returns a matrix of the same shape N * R obtained by applying the multivariate_normal distribution to N points and R samples, by starting from the given seed and correlation.

openquake.risklib.scientific.mean_std(fractions)[source]

Given an N x M matrix, returns mean and std computed on the rows, i.e. two M-dimensional vectors.

openquake.risklib.scientific.normalize_curves(curves)[source]
Parameters:curves – a list of pairs (losses, poes)
Returns:first losses, all_poes
openquake.risklib.scientific.normalize_curves_eb(curves)[source]

A more sophisticated version of normalize_curves, used in the event based calculator.

Parameters:curves – a list of pairs (losses, poes)
Returns:first losses, all_poes
openquake.risklib.scientific.pairwise_diff(values)[source]

Differences between a value and the next value in a sequence

openquake.risklib.scientific.pairwise_mean(values)[source]

Averages between a value and the next value in a sequence

openquake.risklib.scientific.quantile_matrix(values, quantiles, weights)[source]
Parameters:
  • curves – a matrix R x N, where N is the number of assets and R the number of realizations
  • quantile – a list of Q quantiles
  • weights – a list of R weights
Returns:

a matrix Q x N

openquake.risklib.scientific.scenario_damage(fragility_functions, gmv)[source]

Compute the damage state fractions for the given ground motion value. Return am array of M values where M is the numbers of damage states.

openquake.risklib.utils module

class openquake.risklib.utils.memoized(func)[source]

Bases: object

Minimalistic memoizer decorator

openquake.risklib.utils.numpy_map(f, *args)[source]
openquake.risklib.utils.pairwise(iterable)[source]

s -> (s0,s1), (s1,s2), (s2, s3), ...

openquake.risklib.valid module

Validation library for the engine, the desktop tools, and anything else

class openquake.risklib.valid.Choice(*choices)[source]

Bases: object

Check if the choice is valid (case sensitive).

class openquake.risklib.valid.ChoiceCI(*choices)[source]

Bases: object

Check if the choice is valid (case insensitive version).

class openquake.risklib.valid.Choices(*choices)[source]

Bases: openquake.risklib.valid.Choice

Convert the choices, passed as a comma separated string, into a tuple of validated strings. For instance

>>> Choices('xml', 'csv')('xml,csv')
('xml', 'csv')
class openquake.risklib.valid.FloatRange(minrange, maxrange)[source]

Bases: object

class openquake.risklib.valid.MetaParamSet(name, bases, dic)[source]

Bases: type

Set the .name attribute of every Param instance defined inside any subclass of ParamSet.

class openquake.risklib.valid.NoneOr(cast)[source]

Bases: object

Accept the empty string (casted to None) or something else validated by the underlying cast validator.

class openquake.risklib.valid.Param(validator, default=<object object at 0x2b0a06a6ba00>, name=None)[source]

Bases: object

A descriptor for validated parameters with a default, to be used as attributes in ParamSet objects.

Parameters:
  • validator – the validator
  • default – the default value
NODEFAULT = <object object at 0x2b0a06a6ba00>
class openquake.risklib.valid.ParamSet(**names_vals)[source]

Bases: openquake.baselib.hdf5.LiteralAttrs

A set of valid interrelated parameters. Here is an example of usage:

>>> class MyParams(ParamSet):
...     a = Param(positiveint)
...     b = Param(positivefloat)
...
...     def is_valid_not_too_big(self):
...         "The sum of a and b must be under 10: a={a} and b={b}"
...         return self.a + self.b < 10
>>> mp = MyParams(a='1', b='7.2')
>>> mp
<MyParams a=1, b=7.2>
>>> MyParams(a='1', b='9.2').validate()
Traceback (most recent call last):
...
ValueError: The sum of a and b must be under 10: a=1 and b=9.2

The constrains are applied in lexicographic order. The attribute corresponding to a Param descriptor can be set as usual:

>>> mp.a = '2'
>>> mp.a
'2'

A list with the literal strings can be extracted as follows:

>>> mp.to_params()
[('a', "'2'"), ('b', '7.2')]

It is possible to build a new object from a dictionary of parameters which are assumed to be already validated:

>>> MyParams.from_(dict(a="'2'", b='7.2'))
<MyParams a='2', b=7.2>
classmethod check(dic)[source]

Convert a dictionary name->string into a dictionary name->value by converting the string. If the name does not correspond to a known parameter, just ignore it and print a warning.

classmethod from_(dic)[source]

Build a new ParamSet from a dictionary of string-valued parameters which are assumed to be already valid.

params = {}
to_params()[source]

Convert the instance dictionary into a sorted list of pairs (name, valrepr) where valrepr is the string representation of the underlying value.

validate()[source]

Apply the is_valid methods to self and possibly raise a ValueError.

class openquake.risklib.valid.Regex(regex)[source]

Bases: object

Compare the value with the given regex

class openquake.risklib.valid.SimpleId(length, regex='^[\w_\-]+$')[source]

Bases: object

Check if the given value is a valid ID.

Parameters:
  • length – maximum length of the ID
  • regex – accepted characters
class openquake.risklib.valid.SiteParam

Bases: tuple

SiteParam(z1pt0, z2pt5, measured, vs30, lon, lat, backarc)

backarc

Alias for field number 6

lat

Alias for field number 5

lon

Alias for field number 4

measured

Alias for field number 2

vs30

Alias for field number 3

z1pt0

Alias for field number 0

z2pt5

Alias for field number 1

openquake.risklib.valid.ab_values(value)[source]

a and b values of the GR magniture-scaling relation. a is a positive float, b is just a float.

openquake.risklib.valid.boolean(value)[source]
Parameters:value – input string such as ‘0’, ‘1’, ‘true’, ‘false’
Returns:boolean
>>> boolean('')
False
>>> boolean('True')
True
>>> boolean('false')
False
>>> boolean('t')
Traceback (most recent call last):
    ...
ValueError: Not a boolean: t
openquake.risklib.valid.check_levels(imls, imt)[source]

Raise a ValueError if the given levels are invalid.

Parameters:
  • imls – a list of intensity measure and levels
  • imt – the intensity measure type
>>> check_levels([0.1, 0.2], 'PGA')  # ok
>>> check_levels([0.1], 'PGA')
Traceback (most recent call last):
   ...
ValueError: Not enough imls for PGA: [0.1]
>>> check_levels([0.2, 0.1], 'PGA')
Traceback (most recent call last):
   ...
ValueError: The imls for PGA are not sorted: [0.2, 0.1]
>>> check_levels([0.2, 0.2], 'PGA')
Traceback (most recent call last):
   ...
ValueError: Found duplicated levels for PGA: [0.2, 0.2]
openquake.risklib.valid.check_weights(nodes_with_a_weight)[source]

Ensure that the sum of the values is 1

Parameters:nodes_with_a_weight – a list of Node objects with a weight attribute
openquake.risklib.valid.compose(*validators)[source]

Implement composition of validators. For instance

>>> utf8_not_empty = compose(utf8, not_empty)
openquake.risklib.valid.coordinates(value)[source]

Convert a non-empty string into a list of lon-lat coordinates >>> coordinates(‘’) Traceback (most recent call last): ... ValueError: Empty list of coordinates: ‘’ >>> coordinates(‘1.1 1.2’) [(1.1, 1.2)] >>> coordinates(‘1.1 1.2, 2.2 2.3’) [(1.1, 1.2), (2.2, 2.3)]

openquake.risklib.valid.decreasing_probabilities(value)[source]
Parameters:value – input string, comma separated or space separated
Returns:a list of decreasing probabilities
>>> decreasing_probabilities('1')
Traceback (most recent call last):
...
ValueError: Not enough probabilities, found '1'
>>> decreasing_probabilities('0.2 0.1')
[0.2, 0.1]
>>> decreasing_probabilities('0.1 0.2')
Traceback (most recent call last):
...
ValueError: The probabilities 0.1 0.2 are not in decreasing order
openquake.risklib.valid.depth(value)[source]
Parameters:value – input string
Returns:float >= 0
openquake.risklib.valid.dictionary(value)[source]
Parameters:value – input string corresponding to a literal Python object
Returns:the Python object
>>> dictionary('')
{}
>>> dictionary('{}')
{}
>>> dictionary('{"a": 1}')
{'a': 1}
>>> dictionary('"vs30_clustering: true"')  # an error really done by a user
Traceback (most recent call last):
   ...
ValueError: '"vs30_clustering: true"' is not a valid Python dictionary
openquake.risklib.valid.float_(value)[source]
Parameters:value – input string
Returns:a floating point number
openquake.risklib.valid.floatdict(value)[source]
Parameters:value – input string corresponding to a literal Python number or dictionary
Returns:a Python dictionary key -> number
>>> floatdict("200")
{'default': 200}
>>> text = "{'active shallow crust': 250., 'default': 200}"
>>> sorted(floatdict(text).items())
[('active shallow crust', 250.0), ('default', 200)]
openquake.risklib.valid.gsim(value, **kwargs)[source]

Make sure the given value is the name of an available GSIM class.

>>> gsim('BooreAtkinson2011')
'BooreAtkinson2011()'
openquake.risklib.valid.hazard_id(value)[source]
>>> hazard_id('')
()
>>> hazard_id('-1')
(-1,)
>>> hazard_id('42')
(42,)
>>> hazard_id('42,3')
(42, 3)
>>> hazard_id('42,3,4')
(42, 3, 4)
>>> hazard_id('42:3')
Traceback (most recent call last):
   ...
ValueError: Invalid hazard_id '42:3'
openquake.risklib.valid.hypo_list(nodes)[source]
Parameters:nodes – a hypoList node with N hypocenter nodes
Returns:a numpy array of shape (N, 3) with strike, dip and weight
openquake.risklib.valid.integers(value)[source]
Parameters:value – input string
Returns:non-empty list of integers
>>> integers('1, 2')
[1, 2]
>>> integers(' ')
Traceback (most recent call last):
   ...
ValueError: Not a list of integers: ' '
openquake.risklib.valid.intensity_measure_type(value)[source]

Make sure value is a valid intensity measure type and return it in a normalized form

>>> intensity_measure_type('SA(0.10)')  # NB: strips the trailing 0
'SA(0.1)'
>>> intensity_measure_type('SA')  # this is invalid
Traceback (most recent call last):
  ...
ValueError: Invalid IMT: 'SA'
openquake.risklib.valid.intensity_measure_types(value)[source]
Parameters:value – input string
Returns:non-empty list of Intensity Measure Type objects
>>> intensity_measure_types('PGA')
['PGA']
>>> intensity_measure_types('PGA, SA(1.00)')
['PGA', 'SA(1.0)']
>>> intensity_measure_types('SA(0.1), SA(0.10)')
Traceback (most recent call last):
  ...
ValueError: Duplicated IMTs in SA(0.1), SA(0.10)
openquake.risklib.valid.intensity_measure_types_and_levels(value)[source]
Parameters:value – input string
Returns:Intensity Measure Type and Levels dictionary
>>> intensity_measure_types_and_levels('{"SA(0.10)": [0.1, 0.2]}')
{'SA(0.1)': [0.1, 0.2]}
openquake.risklib.valid.latitude(value)[source]
Parameters:value – input string
Returns:latitude float, rounded to 5 digits, i.e. 1 meter maximum
>>> latitude('-0.123456')
-0.12346
openquake.risklib.valid.latitudes(value)[source]
Parameters:value – a comma separated string of latitudes
Returns:a list of latitudes
openquake.risklib.valid.lon_lat(value)[source]
Parameters:value – a pair of coordinates
Returns:a tuple (longitude, latitude)
>>> lon_lat('12 14')
(12.0, 14.0)
openquake.risklib.valid.longitude(value)[source]
Parameters:value – input string
Returns:longitude float, rounded to 5 digits, i.e. 1 meter maximum
>>> longitude('0.123456')
0.12346
openquake.risklib.valid.longitudes(value)[source]
Parameters:value – a comma separated string of longitudes
Returns:a list of longitudes
openquake.risklib.valid.loss_ratios(value)[source]
Parameters:value – input string
Returns:dictionary loss_type -> loss ratios
>>> loss_ratios('{"structural": [0.1, 0.2]}')
{'structural': [0.1, 0.2]}
openquake.risklib.valid.mag_scale_rel(value)[source]
Parameters:value – name of a Magnitude-Scale relationship in hazardlib
Returns:the corresponding hazardlib object
openquake.risklib.valid.namelist(value)[source]
Parameters:value – input string
Returns:list of identifiers separated by whitespace or commas
>>> namelist('a,b')
['a', 'b']
>>> namelist('a1  b_2       _c')
['a1', 'b_2', '_c']
>>> namelist('a1 b_2 1c')
Traceback (most recent call last):
    ...
ValueError: List of names containing an invalid name: 1c
openquake.risklib.valid.nonzero(value)[source]
Parameters:value – input string
Returns:the value unchanged
>>> nonzero('1')
'1'
>>> nonzero('0')
Traceback (most recent call last):
  ...
ValueError: '0' is zero
openquake.risklib.valid.not_empty(value)[source]

Check that the string is not all blanks

openquake.risklib.valid.pmf(value)[source]

Comvert a string into a Probability Mass Function.

Parameters:value – a sequence of probabilities summing up to 1 (no commas)
Returns:a list of pairs [(probability, index), ...] with index starting from 0
>>> pmf("0.157 0.843")
[(0.157, 0), (0.843, 1)]
openquake.risklib.valid.point3d(value, lon, lat, depth)[source]

This is used to convert nodes of the form <hypocenter lon=”LON” lat=”LAT” depth=”DEPTH”/>

Parameters:
  • value – None
  • lon – longitude string
  • lat – latitude string
Returns:

a validated triple (lon, lat, depth)

openquake.risklib.valid.posList(value)[source]
Parameters:value – a string with the form lon1 lat1 [depth1] ... lonN latN [depthN] without commas, where the depts are optional.
Returns:a list of floats without other validations
openquake.risklib.valid.positivefloat(value)[source]
Parameters:value – input string
Returns:positive float
openquake.risklib.valid.positivefloats(value)[source]
Parameters:value – string of whitespace separated floats
Returns:a list of positive floats
openquake.risklib.valid.positiveint(value)[source]
Parameters:value – input string
Returns:positive integer
openquake.risklib.valid.positiveints(value)[source]
>>> positiveints('1, -1')
Traceback (most recent call last):
   ...
ValueError: -1 is negative in '1, -1'
openquake.risklib.valid.probabilities(value)[source]
Parameters:value – input string, comma separated or space separated
Returns:a list of probabilities
>>> probabilities('')
[]
>>> probabilities('1')
[1.0]
>>> probabilities('0.1 0.2')
[0.1, 0.2]
>>> probabilities('0.1, 0.2')  # commas are ignored
[0.1, 0.2]
openquake.risklib.valid.site_param(z1pt0, z2pt5, vs30Type, vs30, lon, lat, backarc='false')[source]

Used to convert a node like

<site lon=”24.7125” lat=”42.779167” vs30=”462” vs30Type=”inferred” z1pt0=”100” z2pt5=”5” backarc=”False”/>

into a 7-tuple (z1pt0, z2pt5, measured, vs30, backarc, lon, lat)

openquake.risklib.valid.slip_list(nodes)[source]
Parameters:nodes – a slipList node with N slip nodes
Returns:a numpy array of shape (N, 2) with slip angle and weight
openquake.risklib.valid.utf8(value)[source]

Check that the string is UTF-8. Returns an encode bytestring.

>>> utf8(b'\xe0')  
Traceback (most recent call last):
...
ValueError: Not UTF-8: ...
openquake.risklib.valid.utf8_not_empty(value)[source]

Check that the string is UTF-8 and not empty

openquake.risklib.valid.weights(value)[source]
>>> weights('0.4 0.3')
Traceback (most recent call last):
   ...
ValueError: the weights [0.4, 0.3] do not sum up to 1!
openquake.risklib.valid.wkt_polygon(value)[source]

Convert a string with a comma separated list of coordinates into a WKT polygon, by closing the ring.

Module contents